Covering Spaces and the Monodromy Theorem

  • Raghavan Narasimhan

Abstract

We shall develop the results of this chapter in the context of manifolds (Definition 1 in §1 below) although they, and most of their proofs, remain valid for more general spaces. This is done to keep the statements relatively simple, and manifolds are ample for the applications we have in mind.

Keywords

Holomorphic Function Analytic Continuation Neighborhood Versus Hausdorff Space Covering Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References : Chapter 2

  1. [1]
    Ahlfors, L. V.: Complex analysi., 3rd ed. New York: McGraw-Hill, 1979.MATHGoogle Scholar
  2. [2]
    Cartan, H. : Théorie élémentaire des fonctions analytiques d’une ou plusieurs variables complexes. Paris, 1961. (English translation : Elementary theory of analytic functions of one or several complex variables. Addison-Wesley, 1963.)MATHGoogle Scholar
  3. [3]
    Conway, J. B.: Functions of one complex variable. Springer, 1973.MATHCrossRefGoogle Scholar
  4. [4]
    Riemann, B. : Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen komplexen Größe. Collected Work., 3–45.Google Scholar
  5. [5]
    Saks, S. and A. Zygmund: Analytic functions. Warsaw, 1952.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations