Cellular and Network Mechanisms in the Kindling Model of Epilepsy: The Role of GABAergic Inhibition and the Emergence of Strange Attractors

  • Fernando H. Lopes Da Silva
  • Willem Kamphuis
  • Jan M. A. M. Van Neerven
  • Jan Pieter M. Pijn

Abstract

The kindling model of epilepsy offers the possibility of studying a number of general properties of the central nervous system: namely, (1) how plasticity or malleability in neuronal networks can be expressed and (2) how the system may become instable such that the ongoing activity is disrupted. The first point pertains to the question of synaptic plasticity, and the second point is related to the question of the maintenance or interruption of the flow of consciousness.

Keywords

Neuronal Network Entorhinal Cortex Correlation Dimension Strange Attractor Population Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babloyantz, A., Salazar, J.M., Nicolis., C (1985): Evidence of chaotic dynamics of brain activity during the sleep cycle. Physics Lett. 111A, 152–156Google Scholar
  2. Babloyantz, A., Destexhe A. (1986): Low-dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517CrossRefGoogle Scholar
  3. Basar, E., ed. (1988) Dynamics of sensory and cognitive processing by the brain. Berlin: SpringerGoogle Scholar
  4. Brazier, M.A.B. (1972): Spread of seizure discharges in epilepsy: Anatomical and electrophysiological considerations. Exp. Neurol. 36, 263–272CrossRefGoogle Scholar
  5. Brazier, M.A.B. (1973): Electrical seizure discharges within the human brain: The problem of spread. In: Epilepsy: Its phenomena in man. Brazier, M.A.B. (ed.). New York: Academic Press, pp. 153–170Google Scholar
  6. Buzsaki, G., Eidelberg, E. (1982): Direct afferent excitation and long-term potentiation of hippocampal interneurons. J. Neurophysiol. 48, 597–607Google Scholar
  7. Celio, M.R. (1986): Parvalbumin in most gamma-aminobutyric acid containing neurons of the rat cerebral cortex. Science N.Y. 231, 995–997Google Scholar
  8. Collingridge, G.L., Kehl, S.J., McLennan, H. (1983): The antagonism of aminoacidinduced excitation of the hippocampal CAl neurons in vitro. J. Physiol. 334, 19–32Google Scholar
  9. Dvorak, I., Siska, J. (1986): On some problems encountered in the estimation of the correlation dimension of the EEG. Physics Lett. A. 118, 63–66Google Scholar
  10. Fernandes de Lima, Pijn, J.P., Nunes, F.C., Lopes da Silva, F.H. (1990): The role of hippocampal commissures in the interhemispheric transfer of epileptiform afterdischarges in the rat: a study using linear and nonlinear regression analysis. Electroenceph. Clin. Neurophysiol (In Press)Google Scholar
  11. Freeman, W. (1988): Nonlinear neural dynamics in olfaction as a model for cognition. In: Dynamics of sensory and cognitive processing by the brain. Basar, E. (ed.). Berlin: Springer, pp. 19–29CrossRefGoogle Scholar
  12. Goddard, G.V., McIntyre, P.C., Leech, D.K. (1969): A permanent change in brain function resulting from daily electrical stimulation. Exp. Neurol 25, 295–330CrossRefGoogle Scholar
  13. Gotman, J. (1983): Measurement of small time differences between EEG channels: Method and application to epileptic seizure propagation. Electroenceph. Clin. Neurophysiol 56, 501–514CrossRefGoogle Scholar
  14. Gotman, J. (1987): Interhemispheric interactions in seizures of focal onset: Data from human intracranial recordings. Electroenceph. Clin. Neurophysiol. 67, 120–133CrossRefGoogle Scholar
  15. Grassberger, P., Procaccia, I. (1983): Measuring the strangeness of strange attractors. Physics 9D, 189–208Google Scholar
  16. Guilford, J.P., Fruchter, B. (1985): Fundamental statistics in psychology and education. New York: McGraw HillGoogle Scholar
  17. Hamon, B., Heinemann, U. (1986): Effects of GABA and bicuculline on NMDA- and quisqualate-induced reductions in extracellular free calcium in area CAl of the hippocampal slice. Exp. Brain Res. 64, 27–36CrossRefGoogle Scholar
  18. Harris, E.W., Ganong, A.H., Cotman, C.W. (1984): Long-term potentiation in the hippo-campus involves activation of N-methyl-D-aspartate receptors. Brain Res. 323, 132–137CrossRefGoogle Scholar
  19. Kamphuis, W., Wadman, W.J., Buijs, R.M., Lopes da Silva, F.H. (1987): The development of changes in hippocampal GABA immunreactivity in the rat kindling model of epilepsy: A light microscopic study with GABA antibodies. Neuroscience 23, 433–446CrossRefGoogle Scholar
  20. Kamphuis, W., Lopes da Silva, F.H., Wadman, W.J. (1988): Changes in local evoked potentials in the rat hippocampus (CA1) during kindling epileptogenesis. Brain Res. 440, 205–215CrossRefGoogle Scholar
  21. Kamphuis, W., Huisman, E., Wadman, W.J., Heizmann, C.W., Lopes da Silva, F.H. (1989a): Kindling-induced changes in parvalbumin immunoreactivity in rat hippocampus and its relation to long-term decrease in GABA-immunoreactivity. Brain Res. 479, 23–34CrossRefGoogle Scholar
  22. Kamphuis, W., Wadman, W.J., Huisman, E., Lopes da Silva, F.H. (1989b): Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus. Exp. Brain Res. 74, 375–386CrossRefGoogle Scholar
  23. Kamphuis, W., Wadman, W.J., Huisman, E., Lopes da Silva, F.H. (1989 c): Transient increase of cytoplasmic calcium concentration in the rat hippocampus after kindling-induced seizures. An ultrastructural study with the oxalate-pyro-antimonate technique. Neuroscience 29, 667–674Google Scholar
  24. Kamphuis, W., Huisman, E., Dreijer, A.M.C., Ghijsen, W.E.J.M., Verhage, M., Lopes da Silva, F.H. (1990): Kindling increase the Kevoked Ca-dependent release of endogenous GABA in the area CAI of rat hippocampus. Brain Res. 511, 63–70CrossRefGoogle Scholar
  25. King, G.I., Dingledine, R., Giachino, J.L., McNamara, J.O. (1985): Abnormal neuronal excitability in hippocampal slices from kindled rats. J. Neurophyyiol. 54, 1295–1304Google Scholar
  26. Knowles, D.W., Schneiderman, J.H., Wheal, H.V., Stafsrom, C.E., Schwartzkroin, P.A. (1984): Hyperpolarizing potentials in guinea pig hippocampal CA3 neurons. Cell Mol. Neurobiol. 4, 207–230CrossRefGoogle Scholar
  27. Kosaka, T., Katsumar, H., Hama, K., Wu, J-Y, Heizmann, C.W. (1987): GABAergic neurons containing the Cat+ binding protein parvalbumin in the rat hippocampus and the dentate gyrus. Brain Res. 419, 119–130CrossRefGoogle Scholar
  28. Leung, L.S. (1979): Orthodromic activation of the hippocampal CAl region in the rat. Brain Res. 176, 49–63CrossRefGoogle Scholar
  29. Leung, L.S. (1982): Nonlinear feedback model of neuronal populations in hippocampal CA1 region. J. Neurophysiol. 47, 845–868Google Scholar
  30. Lopes da Silva, F.H., Arnolds, D.E.A.T. (1978): The physiology of the hippocampus and related structures. Annu. Rev. Physiol. 40, 163–191Google Scholar
  31. Lopes da Silva, F.H., Mars, N.J.I. (1987): Spread of epileptic seizure activity in experimental and clinical epilepsy: The use of mutual information analysis. In: Presurgical evaluation of epileptics. Wieser, H.G., Eiger, C.E. (eds.). Berlin: Springer, pp. 209–214CrossRefGoogle Scholar
  32. Mars, N.J.I., Van Arragon, G.W. (1982): Time delay estimation in non-linear systems using average amount of mutual information analysis. Signal Processing 4, 139–153CrossRefGoogle Scholar
  33. Mars, N.J.I., Lopes da Silva, F.H. (1987): EEG analysis methods based on information theory. In: Methods of analysis of brain electrical and magnetic signals. Gevins, A.S., Rémond, A. (eds.) Amsterdam: Elsevier, pp. 297–307Google Scholar
  34. Mars, N.J.I., Lopes da Silva, F.H, Van Hutten, K., Lommen, J.G. (1977): EEGs during seizures; Localisation of an epileptogenic area. Electroenceph. Clin. Neurophysiol. 43, 575Google Scholar
  35. Melchers, B.P.C., Pennartz, C.M.A., Wadman, W.J., Lopes da Silva, F.H. (1988): Quantitative correlation between induced decreases in extracellular calcium and LTP. Brain Res. 454, 1–10CrossRefGoogle Scholar
  36. Moddemeijer, R. (1987): Estimation of entropy and mutual information of continuous distribution. Internal Report, University of Twente, (The Netherlands), Nr. 080–87–33Google Scholar
  37. Moddemeijer, R. (1989): Delay-estimation with application to electroencephalograms in epilepsy. Ph.D. thesis. University of Twente, Enschede (The Netherlands )Google Scholar
  38. Mody, I., Heinemann, U. (1987): N-methyl-D-aspartate (NMDA) receptors of dentate gyms granule cells participate in synaptic transmission following kindling. Nature 326, 701–703CrossRefGoogle Scholar
  39. Morrell, F., Rasmussen, T., Gloor, P., De Toledo-Morrell, L. (1983): Secondary epileptogenic foci in patients with verified temporal lobe tumors. Electroenceph. Clin. Neurophysiol. 54, 26 PGoogle Scholar
  40. McNamara, J.O. (1986): Kindling model of epilepsy. In: Advances in neurology: vol 44. Delgado-Escueta, A.V., Ward Jr. A.A., Woodbury, D.M., Porter, R.J. (eds.). New York: Raven Press, pp. 1033–1044Google Scholar
  41. Pjin, J.P.M., Vign, P.C.M., Lopes da Silva, F.H. (1989): Localization of epileptogenic foci using a new signal analytical approach. Neurophysiol. Clin. 20, 1–11CrossRefGoogle Scholar
  42. Racine, R.J. (1972): Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroenceph. Clin. Neurophysiol. 32, 295–299CrossRefGoogle Scholar
  43. Röschke, J., Basar, E. (1988): The EEG is not a simple noise: Strange attractors intracranial structures. In: Dynamics of sensory and cognitive processing by the brain. Basar, E. (ed.). Berlin: SpringerGoogle Scholar
  44. Rosén, I., Salford, L., Starck, L. (1984): Sturge-Weber disease—neurophysical evaluation of a case with secondary epileptogenesis, successfully treated with lobectomy. Neuropediatrics 15, 95–98CrossRefGoogle Scholar
  45. Schramka, M., Sedlak, P., Nadvomik, P. (1977): Observation of kindling phenomenon in treatment of pain by stimulation in thalamus. In: Neurosurgical treatment in psychiatry, pain and epilepsy. Sweet, W.H., Obrador, S., Matin-Rodriguez, J.G. (eds.). Baltimore: University Park Press, pp. 651–654Google Scholar
  46. Schuster, H.G. (1984): Deterministic chaos. Weinheim West Germany: Physik-Verlag Serra, R., Andretta, M., Zanarimi, G., Compiani, M. (1986): Introduction to the physics of complex septens. Oxford: Pergamon PressGoogle Scholar
  47. Servit, Z., Musil, F. (1981): Prophylactic treatment of posttraumatic epilepsy: Results of long-term follow-up in Czechoslovakia. Epilepsia 22, 315–320CrossRefGoogle Scholar
  48. Stelzer, A., Slater, N.T., Ten Bruggencate, G. (1987): Activation of NMDA receptors blocks GABAergic inhibition in an in vitro model of epilepsy. Nature 326, 698–701CrossRefGoogle Scholar
  49. Stichell, C.C., Singer, W., Heizmann, C.W. (1988): Light and electron microscopic immunocytochemical localization of parvalbumin in the dorsal lateral geniculate nucleus of the cat: Evidence for coexistence with GABA. J. Comp. Neurol. 268, 29–37CrossRefGoogle Scholar
  50. Schwartzkroin, A. (1986): A regulation of excitability in hippocampal neurons. In: The hippocampus: vol. 3. Isaacson, R.L., Pibram, K.H. (eds.). New York: Raven Press, pp. 113–136Google Scholar
  51. Takens, F. (1981): Dynamical systems and turbulence. In: Lecture notes in mathematics vol. 898, Rand, D.A., Young, L.S. (eds.). Berlin: Springer, pp. 365–381Google Scholar
  52. Theiler, J. (1986): Spurious dimension from correlation algorithms applied to limited time-series data. Physiol Rev A, 34, 3427–3432Google Scholar
  53. Traub, R.D., Wong, R.K.S. (1983): Synchronized burst discharge in disinherited hippo-campai slice. II. Model of cellular mechanism. J. Neurophysiol. 49, 442–558Google Scholar
  54. Van Neerven, J.M.A.M. (1987): Determination of the correlation dimension from a time series: Applications to rat EEGs in sleep, theta rhythm and epilepsy. Master’s thesis, University of Amsterdam, AmsterdamGoogle Scholar
  55. Wada, J.A., Sato, M, Corcoran, M.E. (1974): Persistent seizure susceptibility and recurrent spontaneous seizures in kindled cats. Epilepsia 15, 464–478Google Scholar
  56. Wadman, W.J., Lopes da Silva, F.H., Leung, L.S. (1983): Two types of interictal transients of reversed polarity in rat hippocampus during kindling. Electroenceph. Clin. Neurophysiol. 55, 314–319CrossRefGoogle Scholar
  57. Wadman, W.J., Heinemann, U., Konnerth, A., Neuhaus, S. (1985): Hippocampal slices of kindled rats reveal calcium involvement in epileptogenesis. Exp. Brain Res. 57, 404–407CrossRefGoogle Scholar
  58. Xu, N., Xu, J., (1988): The fractal dimension of EEG as a physical measure of conscious human brain activities. Bull. Math Biol. 50, 559–565Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Fernando H. Lopes Da Silva
  • Willem Kamphuis
  • Jan M. A. M. Van Neerven
  • Jan Pieter M. Pijn

There are no affiliations available

Personalised recommendations