Microemulsions pp 33-47 | Cite as
Dynamic Light Scattering from Water Microemulsions in Organic Media
Chapter
Abstract
Microemulsions are thermodynamically stable apparently homogeneous dispersions of water in oil (W/O) or oil in water (O/W). These isotropic, solubilised systems can form in the presence of surfactants, sometimes also requiring the presence of a co-surfactant.
Keywords
Dynamic Light Scattering Surfactant Layer Microemulsion Droplet Short Time Decay Interparticle Separation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.M. B. Mathews and E. Hirschhorn, J. Colloid Sci. 8, 86 (1953)Google Scholar
- 2.P. N. Pusey and J. M. Vaughan, in “Dielectric and Related Phenomena ” (Chemical Society Specialist Periodical Report, 1975 ) vol. II p. 48.Google Scholar
- 3.J. V. Doherty and J. H. R. Clarke, Sci. Prog. Oxf. 66, 385, (1980).Google Scholar
- 4.R. A. Day, B. H. Robinson, J. H. R. Clarke and J. V. Doherty, J. Chem. Soc. Faraday Transactions I, 75, 132 (1979).CrossRefGoogle Scholar
- 5.M. Zulauf and H. F. Eicke, J. Phys. Chem., 83, 480, (1979).CrossRefGoogle Scholar
- 6.E. Sein, J. R. Lalanne, J. Buchert and S. Kielich, J. Coll. Interface Sci., 72, 363 (1979).CrossRefGoogle Scholar
- 7.A. Einstein, “Investigations on the Theory of the Brownian Movement”, Dover, 1956.Google Scholar
- 8.B. J. Berne and R. Pecora, “Dynamic Light Scattering”, Wiley, 1976.Google Scholar
- 9.B. Chu, “Laser Light Scattering”, Academic, 1974.Google Scholar
- 10.H. Z. Cummins and E. R. Pike (eds) (a) “Photon Correlation Spectroscopy and Light Beating Spectroscopy”, (b) “Photon Correlation Spectroscopy and Velocimetry” Proc. NATO ASI Plenum, (a) 1974, (b) 1977.Google Scholar
- 11.N. A. Mazer, G. B. Benedek and M. C. Carey, (a) J. Phys. Chem., 80, 1075 (1976), (b) in “Micellization, Solubilization and Micro-emulsions”, Vol. 1, ed., K. L. Mittal, Plenum, 1977.Google Scholar
- 12.M. Corti and V. Degiorgio, (a) Chem. Phys. Lett. 49, 141, (1977); (b) Chem. Phys. Lett. 53, 237, (1978); (c) in ref. 10(b) p. 450, (d) Annales de Physique (Paris) 3, 303 (1978).Google Scholar
- 13.P. G. Guest “Numerical Methods of Curve Analysis” Cambridge UP, 1961Google Scholar
- 14.L. Davies and P. L. Goldsmith (eds) “Statistical Methods of Research and Production”, 4th Edn., Oliver and Boyd, 1972.Google Scholar
- 15.D. E. Koppel, J. Chem. Phys. 57, 4814 (1972).CrossRefGoogle Scholar
- 16.P. N. Pusey, J. Phys. A., 8, 1433, (1975).CrossRefGoogle Scholar
- 17.P. N. Pusey, Phil. Trans. Roy. Soc. Lond. A, 293, 429 (1979).Google Scholar
- 18.a) Z. Gulari, E. Gulari, Y. Tsunashima and B. Chu, J. Chem. Phys., 70, 3965, (1979). (b) F. C. Chen, A. Yeh and B. Chu, J. Chem. Phys. 66, 1290, (1977)Google Scholar
- 19.E. Gulari, B. Bedwell and S. Alkhafaji, J. Colloid and Interface Sci., 77, 202, (1980).CrossRefGoogle Scholar
- 20.A. M. Cazabat, D. Langevin and A. Pouchelon, J. Colloid and Interface Sci., 73, 1. (1980).CrossRefGoogle Scholar
- 21.R. Finsy, A. Devriese and H. Lekkerkerker, J. Chem. Soc., Faraday II, 76, 767 (1980).Google Scholar
- 22.G. D. J. Phillies, J. Chem. Phys. 60, 976, (1974); 62, 3925 (1975), 67, 4690 (1977).Google Scholar
- 23.G. K. Batchelor, J. Fluid Mech., 74, 1. (1976).CrossRefGoogle Scholar
- 24.J. L. Anderson and C. C. Reed, J. Chem. Phys., 64, 3240 (1976).CrossRefGoogle Scholar
- 25.B. U. Felderhoff, J. Phys. A., 11, 929, (1978).CrossRefGoogle Scholar
- 26.B. J. Ackerson, J. Chem. Phys., 69, 684, (1978).CrossRefGoogle Scholar
- 27.J. C. Brown, P. N. Pusey, J. W. Goodwin and R. H. Ottewill, J. Phys. A., 8, 664 (1975).CrossRefGoogle Scholar
- 28.P. N. Pusey, J. Phys. A., 11, 119 (1978).CrossRefGoogle Scholar
- 29.M. B. Weissman, J. Chem. Phys., 72, 231 (1980).CrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media New York 1982