Kinins—II pp 147-163 | Cite as

Fluorogenic Peptide Substrates for Proteases in Blood Coagulation, Kallikrein-Kinin and Fibrinolysis Systems

  • S. Iwanaga
  • T. Morita
  • H. Kato
  • T. Harada
  • N. Adachi
  • T. Sugo
  • I. Maruyama
  • K. Takada
  • T. Kimura
  • S. Sakakibara
Part of the Advances in Experimental Medicine and Biology book series (AEMB)

Abstract

Mammalian plasmas contain a number of “serine-active site” trypsin-like proteinases, which participate in blood coagulation, kallikrein-kinin, fibrinolysis and complement systems. The proteinases have an ability to cleave selectively proteins, that is, limited proteolysis, and catalyze the cascade reactions, which involve several sequential transformations of proenzymes to enzymes (Davie et al. 1969). Table i shows the amino acid sequences around the scissile bonds of natural substrates attacked by these proteinases. It has been well known that the amino acid residues preceding the scissile bond, P2 and P3 sites, in the substrates, are of importance for the enzyme-substrate interaction (Blomback, 1970). For instance, a part of the sequence, Asp-Asp-Asp-Lys, which is located in the NH2-terminal portion of trypsinogen, has been known to comprise the substrate recognition sites and specificity sequence for enterokinase (Ottesen, 1967). Similarly, Factor Xa is presumed to recognize the tetrapeptide sequence Ile-Glu-Gly-Arg located close to the cleavage site required for the activation of bovine prothrombin (Magnusson et al. 1975). Based on this idea, several peptidyl-p-nitroanilides, so called “chromogenic substrate”, which suit a specificity requirement of proteinases,

Keywords

Horseshoe Crab Fluorogenic Substrate Tissue Kallikrein Amidase Activity Plasma Kallikrein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blombäck, B. (1970) In: The Hemostatic Mechanism in Man and Other Animals (ed. by R. G. Macfarlane), pp. 169–182, Academic Press, New York.Google Scholar
  2. Claeson, G., Aurell, L., Karlsson, G., and Fiberger, P. (1977) In: New Methods for the Analysis of Coagulation Using Chromogenic Substrates (ed. by Witt, I.), pp. 251–259, Walter de Gruyter, Berlin, New York.Google Scholar
  3. Glavin, S. A., Bobbitt, J. L., Shuman, R. T. and Smithwich, E. L. Jr. (1977). Use of peptidyl-4-methoxy-2-naphthylamides to assay plasmin. Anal. Biochem. 80, 355–365.CrossRefGoogle Scholar
  4. Davie, E. W., Rougie, C. and Lundblad, R. L. (1969) In: Recent Advances in Blood Coagulation (ed. by L. Poller), pp. 13–27, J. A. Churchill Hill Ltd., London.Google Scholar
  5. Deutsch, D. G. and Mertz, E. T. (1970). Plasminogen: Purification from human plasma by affinity chromatography. Science, 170, 1095–1096.PubMedCrossRefGoogle Scholar
  6. Fujikawa, K., Legaz, M. E. and Davie, E. W. (1972). Bovine Factor X1 (Stuart factor). Mechanism of activation by a protein from Russell’s viper venom. Biochemistry, 11, 4892–4899.PubMedCrossRefGoogle Scholar
  7. Fujiwara, K. and Tsuru, D. (1978). New chromogenic and fluorogenic substrates for pyrorridonyl peptidase. J. Biochem. 83, 1145–1149.PubMedGoogle Scholar
  8. Graf, L., Barat, E., Borvendeg, J., Hermann, J. and Patthy, A. (1976). Action of thrombin on ovine, bovine and human pituitary growth hormones. Eur. J. Biochem. 64, 333–340.PubMedCrossRefGoogle Scholar
  9. Han, Y. N., Kato, H., Iwanaga, S. and Komiya, M. (1978). Primary structure of bovine plasma high-molecular-weight kininogen, characterization of carbohydrate-free fragment 1.2 (fragment X) and its biological activity. J. Biochem. 83, 223–235.PubMedGoogle Scholar
  10. Harada, T., Morita, T. and Iwanaga, S. (1978). A new assay method for bacterial endotoxins using horseshoe crab clotting enzyme. J. Med. Enz. (in Japanese), 3, 43–60.Google Scholar
  11. Huseby, R. M., Clavin, S. A., Smith, R. E., Hull, R. N. and Smitheick, E. L. Jr. (1977). Studies on tissue culture plasminogen activator II. The detection and assay of urokinase and plasminogen activator from LLC-PK1 cultures (porcine) by the synthetic substrate Nd -benzyloxycarbonyl-glycyl-glycyl-arginyl-4-methoxy-2-naphthylamide. Thrombosis Research, 10, 679–687.PubMedCrossRefGoogle Scholar
  12. Iwanaga, S., Morita, T., Harada, T., Nakamura, S., Niwa, M., Takada, K., Kimura, T., and Sakakibara, S. (1978). Chromogenic substrates for horseshoe crab clotting enzyme. Its application for the assay of bacterial endotoxins. Haemostasis, 7, 183–188.PubMedGoogle Scholar
  13. Kanaoka, Y., Takahashi, T. and Nakayama, H. (1977). A new fluoro-genic substrate for aminopeptidase. Chem. Pharm. Bull. 25, 362–363.PubMedCrossRefGoogle Scholar
  14. Katayama, K., Ericsson, L. H., Wade, R. D., Fujikawa, K., Walsh, K. A., Neurath, H. and Titani, K. (1978). Structural studies of bovine Factor IX. Fe. Proc. 37, 1617.Google Scholar
  15. Kato, T., Nagatsu, T., Kimura, T. and Sakakibara, S. (1977). Seikagaku (in Japanese), 49, 990.Google Scholar
  16. Kato, H., Adachi, N., Iwanaga, S., Abe, K., Takada, K., Kimura, T. and Sakakibara, S. (1978) In: Abstract, New assay method for kallikrein in urine, using fluorogenic peptide substrate. The 98th Congress on Pharmaceutical Society of Japan held in Okayama on April 5 to 9, p. 485.Google Scholar
  17. Magnusson, S., Sottrup-Jensen, L. and Petersen, T. E. (1975) In: Prothrombin and Related Coagulation Factors (ed by Hemker, H. C. Veltkamp, J. J.) pp. 25–46, Leiden University Press, Leiden.CrossRefGoogle Scholar
  18. Mikuni, Y., Iwanaga, S. and Konishi, K. (1973). A peptide released from plasma fibrin stabilizing factor in the conversion to the active enzyme by thrombin. Biochem. Biophys. Res. Communs. 54, 1393–1402.CrossRefGoogle Scholar
  19. Morita, T., Iwanaga, S. and Suzuki, T. (1974). Studies on the activation of bovine prothrombin. Isolation and characterization of the fragments released from the prothrombin by activated factor Xa. J. Biochem. 76, 1031–1048.PubMedGoogle Scholar
  20. Morita, T. and Iwanaga, S. (1978). Purification and properties of prothrombin activator from the venom of Echis carinatus. J. Biochem. 83, 559–570.PubMedGoogle Scholar
  21. Nakabayashi, M., Chin, N., Ogino, M., Kaneko, Y., Sato, K. and Sakamoto, M. (1978) In: Abstract (in Japanese), The 1st Congress of Japanese Society on Thrombosis and Hemostasis. p. 60.Google Scholar
  22. Nakamura, S., Iwanaga, S., Suzuki, T., Mikuni, Y. and Konishi, K. (1974). Amino acid sequence of the peptide released from bovine factor XIII following activation by thrombin. Biochem. Biophys. Res. Communs. 58, 250–256.CrossRefGoogle Scholar
  23. Nakamura, S., Morita, T., Iwanaga, S., Niwa, M. and Takahashi, K. (1977) Seikagaku (in Japanese) 49, 759.Google Scholar
  24. Nakamura, S., Morita, T., Iwanaga, S., Niwa, M. and Takahashi, K. (1977). A sensitive substrate for the clotting enzyme in horseshoe crab hemocytes. J. Biochem. 81, 1567–1569.PubMedGoogle Scholar
  25. Nieuwenhuizen, W., Wijngaads, G. and Groeneveld, E. (1977). genic peptide amide substrates for the estimation of plasminogen activators and plasmin. Anal. Biochem. 83, 143–148.Google Scholar
  26. Ogawa, N., Yamamoto, H., Katamine, T. and Tajima, H. fication and some properties of urokinase. Haemorrh. (Stuttg.), 34, 194–209.Google Scholar
  27. Ottesen, M. (1967). Induction of biological activity by limited proteolysis. Ann. Rev. Biochem. 36, 55–76.PubMedCrossRefGoogle Scholar
  28. Sugo, T., Kato, H., Iwanaga, S., and Fujii, S. (1978). Seikagaku (in Japanese) 50, 763.Google Scholar
  29. Svendsen, L., BlombHck, B., BlombHck, M. and Olsson, P. (1972). Synthetic chromogenic substrates for determination of trypsin, thrombin, and thrombin-like enzymes. Thrombosis Research, 1, 267–278.CrossRefGoogle Scholar
  30. Takahashi, H., Nagasawa, S. and Suzuki, T. (1972). Studies on prekallikrein of bovine plasma. I. Purification and properties. J. Biochem. 71, 471–483.PubMedGoogle Scholar
  31. Wiman, B. (1973). Primary structure of peptides released during activation of human plasminogen by urokinase. Eur. J. Biochem. 39, 1–9.PubMedCrossRefGoogle Scholar
  32. Zimmerman, M., Yurewicz, E. C. and Patel, G. (1976). A new fluoro-genic substrate for chymotrypsin. Anal. Biochem. 70, 258–262.PubMedCrossRefGoogle Scholar
  33. Zimmerman, M., Ashe, B., Yurewicz, E. C. and Patel, G. (1977). Sensitive assays for trypsin, elastase, and chymotrypsin using new fluorogenic substrates. Anal. Biochem. 78, 47–51.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1979

Authors and Affiliations

  • S. Iwanaga
    • 1
  • T. Morita
    • 2
  • H. Kato
    • 2
  • T. Harada
    • 2
  • N. Adachi
    • 2
  • T. Sugo
    • 2
  • I. Maruyama
    • 2
  • K. Takada
    • 3
  • T. Kimura
    • 3
  • S. Sakakibara
    • 3
  1. 1.Department of Biology, Faculty of ScienceKyushu UniversityFukuoka 812Japan
  2. 2.Institute for Protein ResearchOsaka UniversitySuita Osaka 565Japan
  3. 3.Peptide InstituteProtein Research FoundationMinoh, Osaka 565Japan

Personalised recommendations