The Computer Simulation of Ionic Liquids

  • David Adams
  • Graham Hills

Abstract

Every respectable branch of science is based on a carefully woven mixture of theory and experiment, of hypothesis and observation. Great steps are made when new ideas suggest new experiments and new observations require new concepts. That this happy marriage does not exist for liquids or solutions is plainly evident in the petering out of attempts to improve on any of the classically correct theories of Born, Debye, Hückel, Bjerrum, and Onsager. All such theories invoke concepts of charged hard spheres embedded in a structureless dielectric interacting through a simple Coulomb potential. All attempts to recognize the “graininess” of the problem, i.e., the molecular composition and structure of the system, rapidly degenerate into hand-waving assertions of hydration numbers, field-dependent dielectric constants, solvent-separated ion pairs, etc.

Keywords

Molecular Dynamic Ionic Liquid Monte Carlo Molten Salt Ensemble Average 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. O. Watts, Specialist Periodical Reports of the Chemical Society, Statistical Mechanics, Vol. I, Chemical Society, London (1974).Google Scholar
  2. 2.
    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).CrossRefADSGoogle Scholar
  3. 3.
    C. W. Outhwaite, Specialist Periodical Reports of the Chemical Society, Statistical Mechanics, Vol. 2, Chemical Society, London (1975).CrossRefGoogle Scholar
  4. 4.
    P. Turq, F. Lantelme, and H. L. Friedman, J. Chem. Phys. 66, 3039 (1977).CrossRefADSGoogle Scholar
  5. 5.
    L. V. Woodcock and K. Singer, Trans. Faraday Soc. 67, 12 (1971).CrossRefGoogle Scholar
  6. 6.
    D. J. Adams and I. R. McDonald, J. Phys. C. 7, 2761 (1974).CrossRefADSGoogle Scholar
  7. 7.
    J. P. Valleau and S. G. Whittington, in Statistical Mechanics Part A. Equilibrium Methods,Ed. B. J. Berne, Plenum, New York (1977), Chap. 4; J. P. Valleau and G. M. Torrie, in Statistical Mechanics Part A. Equilibrium Methods,Ed. B. J. Berne, Plenum, New York (1977), Chap. 5.Google Scholar
  8. 8.
    D. J. Adams, Mol. Phys. 32, 647 (1976)CrossRefADSGoogle Scholar
  9. D. J. Adams, Mol. Phys. 37, 211 (1979).CrossRefADSGoogle Scholar
  10. 9.
    W. G. Hoover and F. H. Ree, J. Chem. Phys. 49, 3609 (1968).CrossRefADSGoogle Scholar
  11. 10.
    W. W. Wood, Physics of Simple Liquids,Eds. J. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke, North-Holland, Amsterdam (1968), Chap. 5.Google Scholar
  12. 11.
    M. J. L. Sangster and M. Dixon, Adv. Phys. 25, 247 (1976).Google Scholar
  13. 12.
    D. J. Adams, J. Chem. Soc. Faraday Trans. 11 72, 1372 (1976).CrossRefGoogle Scholar
  14. 13.
    E. M. Adams, I. R. McDonald, and K. Singer, Proc. R. Soc. London A Ser. 357, 37 (1977).CrossRefADSGoogle Scholar
  15. 14.
    E. M. Gosling, I. R. McDonald, and K. Singer, Mol. Phys. 26, 1475 (1973).CrossRefADSGoogle Scholar
  16. 15.
    G. Ciccotti and G. Jacucci, Phys. Rev. Lett. 35, 789 (1975).CrossRefADSGoogle Scholar
  17. 16.
    G. Ciccotti, G. Jacucci, and I. R. McDonald, Phys. Rev. A 13, 426 (1976).CrossRefADSGoogle Scholar
  18. 17.
    D. J. Adams, Chem. Phys. Lett. 62, 329 (1979).CrossRefADSGoogle Scholar
  19. 18.
    D. Levesque, G. N. Patey, and J. J. Weis, Mol. Phys. 34, 1077 (1977).CrossRefADSGoogle Scholar
  20. 19.
    I. R. McDonald, J. Phys. C. 7, 1225 (1974).CrossRefADSGoogle Scholar
  21. 20.
    D. J. Adams and J. C. Rasaiah, Faraday Discuss. 64, 22 (1978).Google Scholar
  22. 21.
    A. Rahman and F. H. Stillinger, J. Chem. Phys. 55, 3336 (1971)CrossRefADSGoogle Scholar
  23. F. H. Stillinger and A. Rahman, J. Chem. Phys. 60, 1545 (1974).CrossRefADSGoogle Scholar
  24. 22.
    F. H. Stillinger, Adv. Chem. Phys. 31, 1 (1975).CrossRefGoogle Scholar
  25. 23.
    R. O. Watts, Mol. Phys. 32, 659 (1976).CrossRefADSGoogle Scholar
  26. 24.
    P. C. Vogel and K. Heinzinger, Z. Naturforsch. 30a, 789 (1975).ADSGoogle Scholar
  27. 25.
    M. Rao and D. Levesque, J. Chem. Phys. 65, 3233 (1976).CrossRefADSGoogle Scholar
  28. 26.
    D. M. Heyes, M. Barber, and J. H. R. Clarke, J. Chem. Soc. Faraday Trans. 11 73, 1485 (1977).Google Scholar
  29. 27.
    G. A. Chapel, G. Saville, S. M. Thompson, and J. S. Rowlinson, J. Chem. Soc. Faraday Trans. I I 73, 1133 (1977).Google Scholar
  30. 28.
    P. Schofield, Comput. Phys. Commun. 5, 17 (1973).CrossRefADSGoogle Scholar
  31. 29.
    M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids 25, 45 (1964).CrossRefADSGoogle Scholar
  32. 30.
    B. J. Berne and G. D. Harp, Adv. Chem. Phys. 24, 257 (1973).CrossRefGoogle Scholar
  33. 31.
    J. R. D. Copley and S. W. Lovesey, Rep. Prog. Phys. 38, 461 (1975).CrossRefADSGoogle Scholar
  34. 32.
    A. Rahman, Rivista Nuoro Cimento 1, Numero Specialie 315 (1969).Google Scholar
  35. 33.
    W. W. Wood and J. L. Erpenbeck, Ann. Rev. Phys. Chem. 27, 319 (1976).CrossRefADSGoogle Scholar
  36. 34.
    W. B. Streett and K. E. Gubbins, Ann. Rev. Phys. Chem. 28, 373 (1977).CrossRefADSGoogle Scholar
  37. 35.
    J. A. Barker and D. Henderson, Rev. Modern Phys. 48, 587 (1976).MathSciNetCrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • David Adams
    • 1
  • Graham Hills
    • 1
  1. 1.Department of ChemistryThe UniversitySouthamptonUK

Personalised recommendations