Factors Affecting Gene Flow between the Host Races of Eurosta solidaginis

  • Joanne K. Itami
  • Timothy P. Craig
  • John D. Horner

Abstract

Speciation involves the evolution of reproductive isolation between populations (Mayr 1963; Bush 1994). Despite many controversies about how species are defined, and how they evolve, the study of reproductive isolating mechanisms remains central to understanding speciation. Different speciation models make very different assumptions about how reproductive isolation evolves (Mayr 1963; Bush 1975a, 1994; White 1978). Host races and recently evolved sibling species of phytophagous insects offer unique opportunities to study the speciation process. Because the process of speciation is ongoing or recently completed, these extant populations retain the characteristics that were responsible for the evolution of their reproductive isolation. By examining the ecological, behavioral, and genetic characteristics of these populations, we can test assumptions about the evolution of reproductive isolation made in different models of speciation.

Keywords

Host Plant Gene Flow Emergence Time Reproductive Isolation Assortative Mating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamson, W. G., J. M. Brown, S. K. Roth, D. G. Sumerford, J. D. Horner, M. D. Hess, S. Togerson How, T. P. Craig, R. A. Packer, and J. K. Itami. 1986. Gallmaker speciation: An assessment of the roles of host-plant characters, phenology, gallmaker competition, and natural enemies. Pp. 208–221 in P. W. Price, W. J. Mattson, and Y. N. Baranchikov (Eds.), The Ecology and Evolution of Gall-Forming Insects. USDA Forest Service, North-Central Experiment Station, General Technical Report NC-174.Google Scholar
  2. Abrahamson, W. G. and A. E. Weis. 1996. The Evolutionary Ecology of a Tritrophic Interaction: Goldenrod, the Stemgaller and Its Natural Enemies. Princeton University Press, Princeton, NJ.Google Scholar
  3. Avise, J. C. 1994. Molecular Markers, Natural History, and Evolution. Chapman & Hall, New York.CrossRefGoogle Scholar
  4. Berlocher, S. H. 1989. The complexities of host races and some suggestions for their identification by enzyme electrophoresis. Pp. 51–68 in H. D. Loxdale and J. den Hollander (Eds.), Electrophoretic Studies on Agricultural Pests, Systematics Association Special, Vol. 39. Clarendon Press, Oxford, UK.Google Scholar
  5. Brown, J. M., W. G. Abrahamson, R. A. Packer, and P. A. Way. 1995. The role of natural-enemy escape in a gallmaker host-plant shift. Oceologia 104: 52–60.CrossRefGoogle Scholar
  6. Brown, J. M., W. G. Abrahamson, and R. A. Way. 1996. Mitochondrial DNA phylogeography of host races of the goldenrod ball gallmaker, Eurosta solidaginis (Diptera: Tephritidae). Evolution 50: 777–786.CrossRefGoogle Scholar
  7. Bush, G. L. 1969. Sympatric host race formation and speciation in frugivorous flies of the genus Rhagoletis (Diptera, Tephritidae). Evolution 23: 237–251.CrossRefGoogle Scholar
  8. Bush, G. L. 1975a. Modes of animal speciation. Annu. Rev. Ecol. Syst. 6: 339–369.CrossRefGoogle Scholar
  9. Bush, G. L. 1975b. Sympatric speciation in phytophagous parasitic insects. Pp. 187–206 in R. W. Price (Ed.), Evolutionary Strategies of Parasitic Insects and Mites. Plenum Press, New York.CrossRefGoogle Scholar
  10. Bush, G. L. 1993a. Host race formation and sympatric speciation in Rhagoletis fruit flies (Diptera: Tephritidae). Psyche 99: 335–355.CrossRefGoogle Scholar
  11. Bush, G. L. 1993b. A reaffirmation of Santa Rosalia, or why are there so many kinds of small animals. Pp. 229–249 in D. R. Lees and D. Edwards (Eds.), Evolutionary Patterns and Processes. The Linnean Society of London, London, UK.Google Scholar
  12. Bush, G. L. 1994. Sympatric speciation in animals: New wine in old bottles. Trends Ecol. Evol. 9: 285–288.PubMedCrossRefGoogle Scholar
  13. Bush, G. L. and D. J. Howard. 1986. Allopatric and non-allopatric speciation: Assumptions and evidence. Pp. 411–437 in S. Karlin and E. Nevo (Eds.), Evolutionary Processes and Theory. Academic Press, New York.Google Scholar
  14. Carson, H. L. 1989. Genetic imbalance, realigned selection and the origin of species. Pp. 345–362 in L. V. Giddings, K. Y. Kaneshiro, and W. W. Anderson (Eds.), Genetics, Speciation and the Founder Principle. Oxford University Press, Oxford, UK.Google Scholar
  15. Costa, J. T. III and K. G. Ross. 1994. Hierarchical structure and gene flow in macrogeographic populations of the eastern tent caterpillar (Malacosoma americanum). Evolution 48: 1158–1167.CrossRefGoogle Scholar
  16. Craig, T. P., J. K. Itami, W. G. Abrahamson, and J. D. Horner. 1993. Behavioral evidence for host-race formation in Eurosta solidaginis. Evolution 47: 1696–1710.CrossRefGoogle Scholar
  17. Craig, T. P., J. K. Itami, J. D. Horner, and W. G. Abrahamson. 1994. Host shifts and speciation in gall-forming insects. Pp. 194–207 in P. W. Price, W. J. Mattson, and Y. N. Baranchikov (Eds.), The Ecology and Evolution of Gall-Forming Insects. USDA Forest Service, North Central Experiment Station, General Technical Report NC-174.Google Scholar
  18. Diehl, S. R., and G. L. Bush. 1984. An evolutionary and applied perspective of insect biotypes. Annu. Rev. Entomol. 29: 471–504.CrossRefGoogle Scholar
  19. Diehl, S. R., and G. L. Bush. 1989. The role of habitat preference in adaptation and speciation. Pp. 345–365 in D. Otte and J. A. Endler, (Eds.), Speciation and its Consequences. Sinauer, Sunderland, MA.Google Scholar
  20. Felsenstein, J. 1981. Skepticism toward Santa Rosalia, or why are there so few kinds of animals. Evolution 35: 124–138.CrossRefGoogle Scholar
  21. Guttman, S. I. and L. A. Weigt. 1989. Macrogeographic genetic variation in the Enchenopa binotata complex (Homoptera: Membracidae). Ann. Entomol. Soc. Am. 82: 156–165.Google Scholar
  22. How, S. T., W. G. Abrahamson, and T. P. Craig. 1993. Role of host plant phenology in host use by Eurosta solidaginis (Diptera: Tephritidae) on Solidago (Compositae). Environ. Entomol. 22: 388–396.Google Scholar
  23. Jaenike, J. 1990. Host specialization in phytophagous insects. Annu. Rev. Ecol. Syst. 21: 243–273.CrossRefGoogle Scholar
  24. Mayr, E. 1963. Animal Species and Evolution. Harvard University Press, Cambridge, MA.Google Scholar
  25. Mayr, E. 1988. Toward a New Philosophy of Biology. Harvard University Press, Cambridge, MA.Google Scholar
  26. McCauley, D. E. and W. F. Eanes. 1987. Hierarchical population structure analysis of the milkweed beetle, Tetraopes tetraophthalmus (Forster). Heredity 58: 193–201.CrossRefGoogle Scholar
  27. McPheron, B. A.. D. Courtney Smith, and S. H. Berlocher. 1988. Microgeographic genetic variation in the apple maggot Rhagoletis pomonella. Genetics 119: 445–451.Google Scholar
  28. Ming, Y. 1989. A revision of the genus Eurosta Loew with scanning electron microscopic study of taxonomic characters (Diptera: Tephritidae). M.S. thesis, Washington State University, Pullman, WA.Google Scholar
  29. Mitter, C. and D. J. Futuyma. 1983. An evolutionary-genetic view of host plant utilization by insects. Pp. 427–459 in R. F. Denno and M. S. McClure (Eds.), Variable Plants and Herbivores in Natural and Managed Systems. Academic Press, New York.Google Scholar
  30. Nei, M. 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583–590.PubMedGoogle Scholar
  31. Price, P.W. 1980. Evolutionary Biology of Parasites. Princeton University Press, Princeton, NJ.Google Scholar
  32. Rank, N. E. 1992. A hierarchical analysis of genetic differentiation in a montane leaf bee- tle Chrysomela aeneicollis (Coleoptera: Chrysomelidae). Evolution 46: 1097–1111.CrossRefGoogle Scholar
  33. Rausher, M. D. 1984. The evolution of habitat preference in subdivided populations. Evolution 38: 596–688.CrossRefGoogle Scholar
  34. Rice, W. R. 1984. Disruptive selection on habitat preference and the evolution of reproductive isolation: A simulation study. Evolution. 38: 1251–1260.CrossRefGoogle Scholar
  35. Rice, W. R. 1987. Speciation via habitat. specialization: The evolution of reproductive isolation as a correlated character. Evol. Ecol. 1: 301–314.CrossRefGoogle Scholar
  36. Rice, W. R. and E. E. Hostert. 1993. Laboratory experiments on speciation: What have we learned in 40 years? Evolution. 47: 1637–1653.CrossRefGoogle Scholar
  37. Singer, M. C. 1971. Evolution of food-plant preference in the butterfly Euphydryas editha. Evolution 25: 383–389.CrossRefGoogle Scholar
  38. Singer, M. C. 1983. Determinants of multiple host use by a phytophagous insect population. Evolution 37: 389–403.CrossRefGoogle Scholar
  39. Slatkin, M. 1987. Gene flow and the geographic structure of natural populations. Science 236: 787–792.PubMedCrossRefGoogle Scholar
  40. Sneath, P. H. A. and R. R. Sokal. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco, CA.Google Scholar
  41. Swofford, D. L. and R. B. Selander. 1981. BIOSYS-1: A FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J. Hered. 72: 281–283.Google Scholar
  42. Tauber, C. A. and M. J. Tauber. 1989. Sympatric speciation in insects: Perception and perspective. Pp. 307–344 in D. Otte and J. A. Endler (Eds.), Speciation and Its Consequences. Sinauer Associates, Sunderland, MA.Google Scholar
  43. Thompson, J. N. 1994. The Coevolutionary Process. University of Chicago Press, Chicago, IL.Google Scholar
  44. Uhler, L. D. 1951. Biology and ecology of the goldenrod gall fly, Eurosta solidaginis (Fitch). Memoir 300, Cornell University Agricultural Experiment Station, Ithaca, NY.Google Scholar
  45. Waring, G. L., W. G. Abrahamson, and D. J. Howard. 1990. Genetic differentiation among host-associated populations of the gallmaker Eurosta solidaginis. Evolution 44: 1648–1655.CrossRefGoogle Scholar
  46. Weis, A. E. and W. G. Abrahamson. 1986. Evolution of host-plant manipulation by gall makers: Ecological and genetic factors in the Solidago-Eurosta system. Am. Nat. 127: 681–695.CrossRefGoogle Scholar
  47. Weis, A. E., W. G. Abrahamson, and M. C. Andersen. 1992. Variable selection on Eu-rosta ‘s gall size: I. The extent and nature of variation in phenotypic selection. Evolution 46: 1674–1697.CrossRefGoogle Scholar
  48. Weis, A. E., W. G. Abrahamson, and K. D. McCrea. 1985. Host gall size and oviposition success by the parasitoid Eurytoma gigantea. Ecol. Entomol. 10: 341–348.CrossRefGoogle Scholar
  49. White, M. J. D. 1978. Modes of Speciation. W. H. Freeman, San Francisco, CA.Google Scholar
  50. Wood, T. K. 1980. Divergence in the Enchenopa binotata Say complex (Homoptera: Membracidae) effected by host plant adaptation. Evolution 34: 147–160.CrossRefGoogle Scholar
  51. Wood, T. K. and S. I. Guttman. 1983. Enchenopa binotata complex: Sympatric speciation? Science 220: 310–312.PubMedCrossRefGoogle Scholar
  52. Workman, P. L. and J. D. Niswander. 1970. Population studies in western Indian tribes: II. Local genetic differentiation in the Papago. Am. J. Hum. Genet. 22: 24–49.PubMedGoogle Scholar
  53. Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97–159.PubMedGoogle Scholar
  54. Wright, S. 1978. Evolution and the Genetics of Populations: Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago, IL.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Joanne K. Itami
    • 1
  • Timothy P. Craig
    • 1
  • John D. Horner
    • 2
  1. 1.Department of Life SciencesArizona State University WestPhoenixUSA
  2. 2.Department of BiologyTexas Christian UniversityFort WorthUSA

Personalised recommendations