Photoinduced Responses in UV-Irradiated Cells

  • Claude Hélène
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

The action of sunlight on living organisms can have both beneficial and deleterious effects. Without sunlight there will be no life on earth. Through photosynthesis, food and energy are available to living organisms. Photoregulation of plant growth (photomorphogenesis), phototropism, photomovements, photoperiodism are all depending on the interaction of light with biological systems. Visual perception rests primarily upon light excitation of visual pigments. All these essential processes require visible light interacting with photoreceptors. During the past few years the usefulness of light-induced processes in the treatment of several diseases has been demonstrated : photosensitized treatment of some bacterial or viral infections using dyes as photosensitizersl ; phototherapy of skin diseases such as psoriasis makes use of psgralen derivatives in conjunction with UV-A light (PUVA therapy)2 ; porphyrin derivatives have been utilized to destroy different types of tumors as a result of a photosensitized reaction involving singlet oxygen3 ; visible light is currently used in the treatment of neonatal jaundice4.

Keywords

recA Protein Lower Excited Singlet State Triplet Energy Transfer lexA Repressor Thymine Glycol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.R. Caldas, S. Menezes and R.M. Tyrrell, in “Trends in Photo-biology”, C. Hélène, M. Charlier, T. Montenay-Garestier and G. Laustriat, ed., Plenum Press, New York (1982).Google Scholar
  2. 2.
    H. Hbnigsmann, in: “Trends in Photobiology”, C. Hélène, M. Charlier, T. Montenay-Garestier and G. Laustriat., eds., Plenum Press, New York (1982); J.A. Parrish, in the same book.Google Scholar
  3. 3.
    T.J. Dougherty, D.G. Boyle and K.R. Weishaupt, in: “The Science of Photomedicine”, J.D. Reagan and J.A.Parrish, eds., Plenum Press, New York (1982).Google Scholar
  4. 4.
    T.R.C. Sisson, in: “Trends in Photobiology”, C. Hélène, M. Charlier, T. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York (1982).Google Scholar
  5. 5.
    M.F. Mollick, J.A. Mac Laughlin, J.A. Parrish and R.R. Anderson, in: “The Science of Photomedicine”, J.D. Reagan and J.A. Parrish, eds., Plenum Press, New York (1982).Google Scholar
  6. 6.
    R.M. Tyrell, in: “Trends in Photobiology”, C. Hélène, M. Charlier, T. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York (1982).Google Scholar
  7. 7.
    J.L.M. Hawk and J.A. Parrish, in: “The Science of Photomedicine”, J.D. Reagan and J.A. Parrish, eds., Plenum Press, New York (1982); M.R. Chedckel, Photochem. Photobiol. 35:881 (1982).Google Scholar
  8. 8.
    F. Urbach, in: “The Science of Photomedicine”, J.D. Reagan and J.A. Parrish, eds., Plenum Press, New York (1982).Google Scholar
  9. 9.
    C. Hélène, in: “Synchrotron Radiation Applied to Biophysical and Biochemical Research”, A. Castellani and I.F. Quercia, eds., Plenum Press, New York (1979);Google Scholar
  10. D.N. Nikogosyan, D.A. Angelov and A.A. Oraevsky, Photochem. Photobiol. 35:627 (1982).Google Scholar
  11. 10.
    C. Hélène and M. Charlier, Biochimie 60: 1111 (1978).CrossRefGoogle Scholar
  12. 11.
    M.H. Patrick and R.O. Rahn, in: “Photochemistry and Photobiology of Nucleic Acids”, S.Y. Wang, ed., Academic Press, New York and London (1976).Google Scholar
  13. 12.
    R.O. Rahn and M.H. Patrick, in: “Photochemistry and Photobiology of Nucleic Acids”, S.Y. Wang, ed., Academic Press, New York and London (1976).Google Scholar
  14. 13.
    J.D. Hall and D.W. Mount, Prog. Nucl. Ac. Res. Mol. Biol. 25:53 (1981).Google Scholar
  15. 14.
    P.D. Moore, K.K. Bose, S.D. Rabkin and B.S. Strauss, Proc. Nat. Acad. Sci. USA 78:110 (1981).Google Scholar
  16. 15.
    P. Doubleday, Ph. Lecomte, A. Brandenburger, W.P. Diver and M. Radman, in press (1982).Google Scholar
  17. 16.
    J. Piette and P.D. Moore, Photochem. Photobiol. 35: 705 (1982).CrossRefGoogle Scholar
  18. 17.
    W.L. Carrier, R.D. Snyder and J.D. Regan, in: “The Science of Photomedicine”, J.D. Reagan and J.A. Parrish, eds., Plenum Press, New York (1982);Google Scholar
  19. 18.
    P.C. Hanawalt, S.C. Liu and C.S. Parsons, J. Invest. Dermat. 77:86 (1981).Google Scholar
  20. 18.
    W.D. Rupp, A. Sancar and G.B. Sancar, Biochimie 64: 595 (1982).CrossRefGoogle Scholar
  21. 19.
    B. Demple and S. Linn, Nature 287: 203 (1980).CrossRefGoogle Scholar
  22. 20.
    L.K. Gordon and W.A. Haseltine, J. Biol. Chem. 256:6608 (1981).Google Scholar
  23. 21.
    J.W. Little and D.W. Mount, Cell 29: 11 (1982).CrossRefGoogle Scholar
  24. 22.
    R. Devoret, Proc. Nucl. Ac. Res. Mol. Biol. 26:251 (1981).Google Scholar
  25. 23.
    E.M. Phizicky and J.W. Roberts, Cell 25: 259 (1980).CrossRefGoogle Scholar
  26. 24.
    M. Radman, Photochem. Photobiol. 32:823 (1980).Google Scholar
  27. 25.
    L.E. Bockstahler, Prog. Nucl. Ac. Res. Mol. Biol. 26:303 (1981).Google Scholar
  28. 26.
    D.E. Brash and W.A. Haseltine, Nature 298: 189 (1982).CrossRefGoogle Scholar
  29. 27.
    A. Brandenburger, G.N. Godson, M. Radman, B.W. Glickman, C.A. Van Sluis and O.P. Doubleday, Nature 294: 180 (1981).CrossRefGoogle Scholar
  30. 28.
    R.W. Hart, R.B. Setlow and A.D. Woodhead, Proc. Nat. Acad. Sci. USA 74:5574 (1977).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Claude Hélène
    • 1
  1. 1.INSERM U.201, CNRS ERA 951Muséum National d’Histoire NaturelleParisFrance

Personalised recommendations