Activity Modulation by Photochromic Effectors

  • N. H. Wassermann
  • B. F. Erlanger
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

Although photochromic azobenzene molecules with the ability to modulate biological activity are not found in nature, they can be used to probe naturally occurring systems and to enable us to learn something about the mechanisms by which these systems function. Studies on their ability to mimic or to interfere with biochemical activity can provide information that can compliment data obtained by other methods, including physical (X-ray crystallography, NMR, circular dichroism), chemical, physiological or immunological procedures. Although no single methodology provides a complete, integrated picture of a biochemical process, each can contribute data that serve to clarify the overall system. Even such a powerful technique as X-ray crystallography shows the structure and configuration as it is in a crystal only; this structure can be different from the configuration that directly participate in the biological process.

Keywords

Trans Isomer Quaternary Group Apparent Dissociation Constant Quaternary Nitrogen Carbamyl Choline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.J. Brown, Acta Cryst. 21: 146 (1966).CrossRefGoogle Scholar
  2. 2.
    A. Morstad and C. Romming, Acta Chem. Scand. 25: 3561 (1971).CrossRefGoogle Scholar
  3. 3.
    B.F. Erlanger and W. Cohen, J. Am. Chem. Soc. 85: 346 (1963).CrossRefGoogle Scholar
  4. 4.
    B.F. Erlanger, A.G. Cooper and W. Cohen, Biochemistry 5: 190 (1966).CrossRefGoogle Scholar
  5. 5.
    H. Kaufman, S.M. Vratsanos and B.F. Erlanger, Science 162: 1487 (1968).CrossRefGoogle Scholar
  6. 6.
    H.P. Metzger and I.B. Wilson, Biochemistry 3: 926 (1964).CrossRefGoogle Scholar
  7. 7.
    J. Bieth, S.M. Vratsanos, N.H. Wassermann and B.F. Erlanger, Proc. Nat. Acad. Sci. USA 64: 1103 (1968).CrossRefGoogle Scholar
  8. 8.
    J. Bieth, S.M. Vratsanos, N.H. Wassermann, A.G. Cooper and B.F. Erlanger, Biochemistry 12: 3023 (1973).CrossRefGoogle Scholar
  9. 9.
    J. Bieth, N. Wassermann, S.M. Vratsanos and B.F. Erlanger, Proc. Nat. Acad. Sci. USA 66: 850 (1970).CrossRefGoogle Scholar
  10. 10.
    H.B. Higman, T.R. Podelski and E.Bartels, Biochim. Biophys. Acta 79: 138 (1964).Google Scholar
  11. 11.
    W.J. Deal, B.F. Erlanger and D. Nachmansohn, Proc. Nat. Acad. Sci. USA 64: 1230 (1969).CrossRefGoogle Scholar
  12. 12.
    H.A. Lester, M. Krouse, M. Nass, N.H. Wassermann and B.F. Erlanger, Nature 280: 509 (1979).CrossRefGoogle Scholar
  13. 13.
    H.A. Lester and J.M. Nerbonne, Ann. Rev. Biophys. (1982).Google Scholar
  14. 14.
    R.B.Barlow and H.R. Ing, Brit. J. Pharmacol. 3: 298 (1948).Google Scholar
  15. 15.
    E. Bartels, N.H. Wassermann and B.F. Erlanger, Proc. Nat. Acad. Sci. USA 68: 1820 (1971).CrossRefGoogle Scholar
  16. 16.
    N.H. Wassermann and B.F. Erlanger, Chem. Biol. Interact. 36: 251 (1981).CrossRefGoogle Scholar
  17. 17.
    N.H. Wassermann, E. Bartels and B.F. Erlanger, Proc. Nat. Acad. Sci. USA 76: 256 (1979).CrossRefGoogle Scholar
  18. 18.
    M.E. Krouse, M.M. Nass, J.N. Nerbonne, H.A. Lester, N.H. Wassermann and B.F. Erlanger, in: “Receptors for Neurotransmitters, Hormones and Pheromones in Insects,” D.B. Satelle, Ed., Elsevier/North Holland Biomedical Press (1980).Google Scholar
  19. 19.
    J. Norgeot, H.A. Lester, J.M. Birdsall, J. Stokton, N.H. Wassermann and B.F. Erlanger, J. Gen. Physiol. 79: 657 (1982)CrossRefGoogle Scholar
  20. 20.
    H.A. Lester, M.M. Nass, M.E. Krouse, J.N. Nerbonne, N.H. Wassermann and B.F. Erlanger, Ann. N.Y. Acad. Sci. 346: 475 (1980).CrossRefGoogle Scholar
  21. 21.
    H.A. Lester, M.E. Krouse, M.M. Nass, N.H. Wassermann and B.F. Erlanger, J. Gen. Physiol. 75: 207 (1980).CrossRefGoogle Scholar
  22. 22.
    C. Clothia and P. Pauling, Proc. Nat. Acad. Sci. USA 65: 477 (1970).CrossRefGoogle Scholar
  23. 23.
    P. Pauling and T.J. Petcher, Chem. Biol. Interact. 6: 351 (1973).CrossRefGoogle Scholar
  24. 24.
    H.G. Mautner, E. Bartels and G.D. Webb, Biochem. Pharmacol.; 5: 187 (1966).CrossRefGoogle Scholar
  25. 25.
    B. Pullman, P. Courriere and J.L. Coubeils, Mol. Pharmacol. 7: 397 (1971).Google Scholar
  26. 26.
    N.H. Wassermann, A.S. Penn, P.J. Freimuth, N. Treptow, S. Wentzel, W.L. Cleveland and B.F. Erlanger, Proc. Nat. Acad. Sci. USA 79: 4816 (1982).Google Scholar
  27. 27.
    B.F. Erlanger, Pharmacol. Rev. 25: 271 (1973).Google Scholar
  28. 28.
    A. Karlin, Life Sci. 14: 1385 (1974).CrossRefGoogle Scholar
  29. 29.
    J.C. Meunier and J.-P. Changeux, FEBS Lett. 32: 143 (1973).CrossRefGoogle Scholar
  30. 30.
    T. Heidman and J.-P. Changeux, Ann. Rev. Biochem. 47: 317 (1978).CrossRefGoogle Scholar
  31. 31.
    W.D.McCubbin and C.M. Kay, Acc. Chem. Res. 13: 185 (1980).CrossRefGoogle Scholar
  32. 32.
    G. Kartha, K.J. Varughese and S. Aimoto, Proc. Nat. Acad. Sci. USA 79: 4518 (1982).CrossRefGoogle Scholar
  33. 33.
    H.W. Chang and E. Neumann, Proc. Nat. Acad. Sci. USA 73: 3364 (1976).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • N. H. Wassermann
    • 1
  • B. F. Erlanger
    • 1
  1. 1.Department of Microbiology, Cancer Ctr/Inst. Cancer Res.Columbia UniversityNew YorkUSA

Personalised recommendations