Proposed Mechanism for Photomodulation of Carbon Metabolism Enzyme Activity in Chloroplasts and Cyanobacteria

  • Louise E. Anderson
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

When light activation of one of the Calvin cycle enzymes was first observed some 23 years ago (1) almost every plant physiologist was sure that protein synthesis rather than post translational covalent modification was responsible. Now it is almost universally accepted that light does control the activity of reductive pentose phosphate cycle enzymes, probably through covalent modification involving protein cys groups. But the mechanism, and indeed the function, of light modulation remains the subject of debate. Here I will consider briefly the scope of light modulation of carbon metabolism enzymes in green plants, and then in more detail proposals for the mechanism.

Keywords

Light Modulation Light Activation Spinach Chloroplast Intact Chloroplast Dark Modulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CAM

Crassulacean acid metabolism

DCMU

3-(3,4-dichlorophenyl)-1,1-dimethylurea

DTT

dithiothreitol

FeS

iron sulfur

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Ziegler and I. Ziegler, Der Einfluss der Belichtung auf die NADP+ -abhangige-Clycerinaldehyd-3-phosphate-dehydrogenase, Planta 65: 369 (1965).CrossRefGoogle Scholar
  2. 2.
    L. E. Anderson, Interaction between photochemistry and activity of enzymes, in: “Encyclopedia of Plant Physiology, New Series”, Vol. 6, M. Gibbs and E. Latzko, eds., Springer Verlag, Berlin (1979).Google Scholar
  3. 3.
    L. E. Anderson, A. R. Ashton, D. Ben-Bassat, A. Habib Mohamed and R. Scheibe, Modulation of chloroplast enzyme activity: The Light-Effect-Mediator (LEM) System, What’s New Plant Physiol. 11: 37 (1980).Google Scholar
  4. 4.
    L. E. Anderson, A. H. Mohamed, A. R. Ashton, R. Scheibe, T. Brennan and D. Ben-Bassat, Light modulation: The light effect mediator (LEM) system, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, C. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).Google Scholar
  5. 5.
    L. E. Anderson, A. R. Ashton, A. H. Mohamed and R. Scheibe, Light/dark modulation of enzyme activity in photosynthesis, BioScience 32: 103 (1982).CrossRefGoogle Scholar
  6. 6.
    B. B. Buchanan, R. A. Wolosiuk and P. Schurmann, The role of light in the activation of enzymes in photosynthesis, What’s New Plant Physiol. 10: 1 (1979).Google Scholar
  7. 7.
    B. B. Buchanan, R. A. Wolosiuk and P. Schurmann, Thioredoxin and enzyme regulation, Trends Biochem. Sci. 4: 93 (1979).Google Scholar
  8. 8.
    B. B. Buchanan, Role of light in the regulation of chloroplast enzymes, Ann. Rev. Plant Physiol. 31: 341 (1980).CrossRefGoogle Scholar
  9. 9.
    B. B. Buchanan, Photosynthetic enzyme regulation by the ferredoxin/thioredoxin and the ferralterin mechanism, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).Google Scholar
  10. 10.
    I. M. Rao and L. E. Anderson, Light modulation of enzymes in epidermis: Possible involvement of light activation of enzymes in stomatal opening, Plant Physiol. 69:S-128 (1982).Google Scholar
  11. 11.
    M. D. Hatch, C. R. Slack and T. A. Bull, Light-induced changes in the content of some enzymes of the C-4-dicarboxylic acid pathway of photosynthesis and its effect on other characteristics of photosynthesis, Phytochem. 8: 697 (1969).CrossRefGoogle Scholar
  12. 12.
    S. A. Charles and B. Halliwell, Light activation of fructose bisphosphatase in isolated spinach chloroplasts and deactivation by hydrogen peroxide, Planta 151: 242 (1981).CrossRefGoogle Scholar
  13. 13.
    W. A. Laing, M. Stitt and H. W. Heldt, Control of CO2 fixation. Changes in the activity of ribulosephosphate kinase and fructose- and sedoheptulose-bisphosphatase in chloroplasts, Biochim. Biophys. Acta 637: 348 (1981).CrossRefGoogle Scholar
  14. 14.
    R. Tischner and A. Huttermann, Regulation of glutamine synthetase by light during nitrogen deficency in synchronous Chlorella sorokiniana, Plant Physiol. 66: 805 (1980).CrossRefGoogle Scholar
  15. 15.
    J. V. Cullimore, Glutamine synthetase of Chlamydomonas: Rapid reversible deactivation, Planta 152: 587 (1981).CrossRefGoogle Scholar
  16. 16.
    P. Rowell, M. J. A. M. Sampaio, J. K. Ladha and W. D. P. Stewart, Alteration of cyanobacterial glutamine synthetase activity in vivo in response to light and NH3, Arch. Microbiol. 120: 195 (1979).Google Scholar
  17. 17.
    A. N. Nishizawa, R. A. Wolosiuk and B. B. Buchanan, Chloroplast phenylalanine ammonia-lyase from spinach leaves, Planta 145: 7 (1979).CrossRefGoogle Scholar
  18. 18.
    J. D. Mills and G. Hind, Light-induced Mg2+ ATPase activity of coupling factor in intact chloroplasts, Biochim. Biophys. Acta 547: 455 (1979).CrossRefGoogle Scholar
  19. 19.
    J. D. Mills, P. Mitchell and P. Schurmann, Modulation of coupling factor ATPase activity in intact chloroplasts: The role of the thioredoxin system, FEBS Lett. 112: 173 (1980).CrossRefGoogle Scholar
  20. 20.
    J. D. Mills, P. Mitchell and P. Schurmann, The role of the thioredoxin system in the modulation of coupling factor ATPase activity in intact chloroplasts, in: “Photosynthesis II. Electron Transport and Photophosphorylation”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).Google Scholar
  21. 21.
    J. D. Mills and P. Mitchell, Modulation of coupling factor ATPase activity in intact chloroplasts: Reversal of thiol modulation in the dark, Biochim. Biophys. Acta 679: 75 (1982).CrossRefGoogle Scholar
  22. 22.
    Y. Shahak, Activation and deactivation of H+-ATPase in intact chloroplasts, Plant Physiol. 70: 87 (1982).CrossRefGoogle Scholar
  23. 23.
    S. Muto, S. Miyachi, H. Usuda, G. E. Edwards and J. A. Bassham, Light-induced conversion of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide phosphate in higher plant leaves, Plant Physiol. 68: 324 (1981).CrossRefGoogle Scholar
  24. 24.
    T.-A. Ono and Y. Inoue, Photoactivation of the water-oxidation system in isolated intact chloroplasts prepared from wheat leaves grown under intermittent flash illumination, Plant Physiol. 69: 1418 (1982).CrossRefGoogle Scholar
  25. 25.
    S. P. Robinson, Light stimulates glycerate uptake by spinach chloroplasts, Biochem. Biophys. Res. Commun. 106: 1027 (1982).CrossRefGoogle Scholar
  26. 26.
    Y. W. Kow, D. A. Smyth and M. Gibbs, Oxidation of reduced pyridine nucleotide by a system using ascorbate and hydrogen peroxide from plants and algae, Plant Physiol. 69: 72 (1982).CrossRefGoogle Scholar
  27. 27.
    H. Nakamoto and T. Sugiyama, Partial characterization of the in vitro activation of inactive pyruvate,Pi dikinase from darkened maize leaves, Plant Physiol. 69: 749 (1982).CrossRefGoogle Scholar
  28. 28.
    H. Ziegler, I. Ziegler and H.-J. Schmidt-Clausen, Die lichtinduzierte aktivitatssteigerung der NADP+-abhangigen Glycerinaldehyd-3-phosphat-Dehydrogenase. VII. Untersuchungen an Ceramium rubrum, Planta 81: 169 (1968).CrossRefGoogle Scholar
  29. 29.
    M. Avron and M. Gibbs, Properties of phosphoribulokinase of whole chloroplasts, Plant Physiol. 53: 136 (1974).CrossRefGoogle Scholar
  30. 30.
    L. E. Anderson and M. Avron, Light modulation of enzyme activity in chloroplasts: Generation of membrane-bound vicinal dithiol groups by photosynthetic electron transport, Plant Physiol. 57: 209 (1976).CrossRefGoogle Scholar
  31. 31.
    M. L. Champigny and E. Bismuth, Role of photosynthetic electron transfer in light activation of Calvin cycle enzymes, Physiol. Plant. 36: 95 (1976).CrossRefGoogle Scholar
  32. 32.
    R. C. Leegood and D. A. Walker, Modulation of fructose bisphosphatase activity in intact chloroplasts, FEBS Lett. 116: 21 (1980).CrossRefGoogle Scholar
  33. 33.
    R. C. Leegood and D. A. Walker, Regulation of fructose-1,6-bisphosphatase activity in intact chloroplasts: Studies on the mechanism of inactivation, Biochim. Biophys. Acta 593: 362 (1980).CrossRefGoogle Scholar
  34. 34.
    L. Mve Akamba and L. E. Anderson, Light modulation of glyceraldehyde-3-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase by photosynthetic electron flow in pea chloroplasts, Plant Physiol. 67: 197 (1981).CrossRefGoogle Scholar
  35. 35.
    G. F. Wildner, The regulation of glucose-6-phosphate dehydrogenase in chloroplasts, Z. Naturforsch. 30c: 756 (1975).Google Scholar
  36. 36.
    A. H. Mohamed and L. E. Anderson, Extraction of chloroplast light effect mediator(s) and reconstitution of light activation of NADP-linked malate dehydrogenase, Arch. Biochem. Biophys. 209: 606 (1981).CrossRefGoogle Scholar
  37. 37.
    T. C. Johnson, B. B. Buchanan and R. Malkin, Photosynthetic electron solubilized plastocyanin, FEBS Lett. 133: 296 (1981).CrossRefGoogle Scholar
  38. 38.
    A. R. Ashton and L. E. Anderson, Resolution of the lightdependent modulation system of pea chloroplasts, Biochim. Biophys. Acta 638: 242 (1981).CrossRefGoogle Scholar
  39. 39.
    C. Lara, A. de la Torre and B. B. Buchanan, A new protein factor functional in the ferredoxin-independent light activation of chloroplast fructose 1,6-bisphosphatase, Biochem. Biophys. Res. Commun. 93: 544 (1980).CrossRefGoogle Scholar
  40. 40.
    C. Lara, A. de la Torre and B. B. Buchanan, Ferralterin: an iron-sulfur protein functional in enzyme regulation in photosynthesis, Biochem. Biophys. Res. Commun. 94: 1334 (1980).CrossRefGoogle Scholar
  41. 41.
    C. Lara, A. de la Torre and B. B. Buchanan, Some properties of ferralterin: an iron-sulfur protein functional in enzyme regulation in photosynthesis, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, G. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).Google Scholar
  42. 42.
    A. de la Torre, C. Lara, B. C. Yee, R. Malkin and B. B. Buchanan, Physiochemical properties of ferralterin, a regulatory iron-sulfur protein functional in oxygenic photosynthesis, Arch. Biochem. Biophys. 213: 545 (1982).CrossRefGoogle Scholar
  43. 43.
    B. B. Buchanan, P. P. Kalberer and D. I. Arnon, Ferredoxin-activated fructose diphosphatase in isolated chloroplasts, Biochem. Biophys. Res. Commun. 29: 74 (1967).CrossRefGoogle Scholar
  44. 44.
    P. Schurmann, R. A. Wolosiuk, V. D. Breazeale and B. B. Buchanan, Two proteins function in the regulation of photosynthetic CO2 assimilation in chloroplasts, Nature 263: 257 (1976).CrossRefGoogle Scholar
  45. 45.
    A. de la Torre, C. Lara, R. A. Wolosiuk and B. B. Buchanan, Ferredoxin-thioredoxin reductase: A chromophore-free protein of chloroplasts, FEBS Lett. 107: 141 (1979).CrossRefGoogle Scholar
  46. 46.
    P. Schurmann, The ferredoxin/thioredoxin system of spinach chloroplasts. Purification and characterization of its components, in: “Photosynthesis IV. Regulation of Carbon Metabolism”, C. Akoyunoglou, ed., Balaban International Science Services, Philadelphia (1981).Google Scholar
  47. 47.
    N. A. Crawford, B. C. Yee and B. B. Buchanan, Thioredoxin specific ferredoxin-thioredoxin reductases from corn leaves, Plant Physiol. 69:S-52 (1982).Google Scholar
  48. 48.
    B. C. Yee, A. de la Torre, N. A. Crawford, C. Lara, D. E. Carlson and B. B. Buchanan, The ferredoxin/thioredoxin system of enzyme regulation in a cyanobacterium, Arch. Microbiol. 130: 14 (1981).Google Scholar
  49. 49.
    K. E. Hammel and B. B. Buchanan, Thioredoxin and ferredoxin-thioredoxin reductase activity occur in a fermentative bacterium, FEBS Lett. 130: 88 (1981).CrossRefGoogle Scholar
  50. 50.
    J.-M. Soulie, J. Buc, J.-C. Meunier, J. Pradel and J. Ricard, Molecular properties of chloroplastic thioredoxin f and the photoregulation of the activity of fructose 1,6-bisphosphatase, Eur. J. Biochem. 119: 497 (1981).CrossRefGoogle Scholar
  51. 51.
    R. Scheibe, Thioredoxinm in pea chloroplasts: Concentration and redox state under light and dark conditions, FEBS Lett. 133: 301 (1981).CrossRefGoogle Scholar
  52. 52.
    R. A. Wolosiuk, N. A. Crawford, B. C. Yee and B. B. Buchanan, Isolation of three thioredoxins from spinach leaves, J. Biol. Chem. 254: 1627 (1979).Google Scholar
  53. 53.
    N. A. Crawford, B. C. Yee, A. N. Nishizawa and B. B. Buchanan, Occurence of cytoplasmic f- and m-type thioredoxins in leaves, FEBS Lett. 104: 141 (1979).CrossRefGoogle Scholar
  54. 54.
    P. Schurmann, K. Maeda and A. Tsugita, Isomers in thioredoxins of spinach chloroplasts, Eur. J. Biochem. 116: 37 (1981).CrossRefGoogle Scholar
  55. 55.
    T. Kagawa and M. D. Hatch, Regulation of C-4 photosynthesis: Characterization of a protein factor mediating the activation and inactivation of NADP-Malate dehydrogenase, Arch. Biochem. Biophys. 184: 290 (1977).CrossRefGoogle Scholar
  56. 56.
    A. Schmidt, Isolation of two thioredoxins from the cyanobacterium Synechococcus 6301, Arch. Microbiol. 127: 259 (1980).Google Scholar
  57. 57.
    A. Schmidt, The role of thioredoxins for enzyme regulation in cyanobacteria, in: “Biology of Inorganic Nitrogen and Sulfur”, H. Bothe and A. Trebst, eds., Springer-Verlag, Berlin (1981).Google Scholar
  58. 58.
    M. D. Hatch and C. R. Slack, Studies of the mechanism of activation and inactivation of pyruvate, Pi dikinase, Biochem. J. 112: 549 (1969).Google Scholar
  59. 59.
    T. Sugiyama, Proteinaceous factor reactivating and inactive form of pyruvate,Pi dikinase isolated from dark-treated maize leaves, Plant Cell Physiol. 15: 723 (1974).Google Scholar
  60. 60.
    E. Yamamoto, T. Sugiyama and S. Miyachi, Action spectrum for light activation of pyruvate,Pi dikinase in maize leaves, Plant Cell Physiol. 15: 987 (1974).Google Scholar
  61. 61.
    T. Sugiyama and M. D. Hatch, Regulation of C-4 photosynthesis: Inactivation of pyruvate,Pi dikinase in leaf and chloroplast extract in relation to dark/light regulation in vivo, Plant Cell Physiol. 22: 115 (1981).Google Scholar
  62. 62.
    R. Scheibe and E. Beck, On the mechanism of activation by light of the NADP-dependent malate dehydrogenase in spinach chloroplasts, Plant Physiol. 64: 744 (1979).CrossRefGoogle Scholar
  63. 63.
    R. Alscher-Herman, Chloroplast alkaline FBPase exist in a membrane-bound form, Plant Physiol. (in press).Google Scholar
  64. 64.
    B. Muller, I. Ziegler and H. Ziegler, Lichtinduzierte, reversible Aktivitatssteigerung der NADP-abhangigen Clycerinaldehyl-3-phosphat-Dehydrogenase in Chloroplasten: Zum Mechanismus der reaction, Eur. J. Biochem. 9: 101 (1969).CrossRefGoogle Scholar
  65. 65.
    B. Muller, On the mechanism of the light-induced activation of the NADP-dependent glyceraldehyde phosphate dehydrogenase, Biochim. Biophys. Acta 205: 102 (1970).CrossRefGoogle Scholar
  66. 66.
    I. Ziegler, On the mechanism of activation of ribulose-5-P kinase in isolated chloroplasts, in: “Proceedings of the Ilnd International Congress on Photosynthesis Research”, G. Forti, M. Avron and A. Melandri, eds., Dr. N. V. Junk, The Hague (1972).Google Scholar
  67. 67.
    K. Lendzian and J. A. Bassham, Regulation of glucose 6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios, Biochim. Biophys. Acta 396: 260 (1975).CrossRefGoogle Scholar
  68. 68.
    K. J. Lendzian, Interactions between magnesium ions, pH, glucose-6-phosphate, and NADPH/NADP+ ratios in modulation of chloroplast glucose-6-phosphate dehydrogenase in vitro, Planta 141: 105 (1978).CrossRefGoogle Scholar
  69. 69.
    K. J. Lendzian, Modulation of glucose-6-phosphate dehydrogenase by NADPH, NADP+ and dithiothreitol at variable NADPH/NADP+ ratios in an illuminated reconstituted spinach (Spinacia oleracea L.) chloroplast system, Planta 148: 1 (1980).CrossRefGoogle Scholar
  70. 70.
    L. E. Anderson and S. C. Nehrlich, Photosynthetic electron transport system controls cytoplasmic glucose-6-phosphate dehydrogenase activity in pea leaves, FEBS Lett. 76: 64 (1977).CrossRefGoogle Scholar
  71. 71.
    R. Scheibe and L. E. Anderson, Dark modulation of NADP-dependent malate dehydrogenase and glucose-6-phosphate dehydrogenase in the chloroplast, Biochim. Biophys. Acta 636: 58 (1981).CrossRefGoogle Scholar
  72. 72.
    A. Pla and J. Lopez-Gorge, Thioredoxin/fructose-l,6-bisphosphatase affinity in the enzyme activation by the ferredoxin thioredoxin system, Biochim. Biophys. Acta 636: 113 (1981).CrossRefGoogle Scholar
  73. 73.
    T. Brennan and L. E. Anderson, Inhibition by catalase of darkmediated glucose-6-phosphate dehydrogenase activation in pea chloroplasts, Plant Physiol. 66: 815 (1980).CrossRefGoogle Scholar
  74. 74.
    A. N. Nishizawa and B. B. Buchanan, Enzyme regulation in C-4 photosynthesis: Purification and properties of thioredoxin-linked fructose bisphosphatase and sedoheptulose bisphosphatase from corn leaves, J. Biol. Chem. 256: 6119 (1981).Google Scholar
  75. 75.
    P. Schurmann and R. A. Wolosiuk, Studies on the regulatory properties of chloroplast fructose-1,6-bisphosphatase, Biochim. Biophys. Acta 522: 130 (1978).CrossRefGoogle Scholar
  76. 76.
    R. A. Wolosiuk and B. B. Buchanan, Regulation of chloroplast phosphoribulokinase by the ferredoxin/thioredoxin system, Arch. Biochem. Biophys. 189: 97 (1978).CrossRefGoogle Scholar
  77. 77.
    R. E. Slovacek and S. Vaughn, Chloroplast sulfhydryl groups and the light activation of fructose-1,6-bisphosphatase, Plant Physiol. (in press).Google Scholar
  78. 78.
    L. E. Anderson and T.-C. Lim, Chloroplast glyceraldehyde 3-phosphate dehydrogenase: Light dependent change in the enzyme, FEBS Lett. 27: 189 (1972).CrossRefGoogle Scholar
  79. 79.
    L. E. Anderson, H.-M. Chin and V. K. Gupta, Modulation of chloroplast fructose-1,6-bisphosphatase activity by light, Plant Physiol. 64: 491 (1979).CrossRefGoogle Scholar
  80. 80.
    J. Pradel, J.-M. Soulie, J. Buc, J.-C. Meunier and J. Ricard, On the activation of fructose-1,6-bisphosphatase of spinach chloroplasts and the regulation of the Calvin cycle, Eur. J. Biochem. 113: 507 (1981).CrossRefGoogle Scholar
  81. 81.
    B. B. Buchanan, P. Schurmann and P. P. Kalberer, Ferredoxin-activated fructose diphosphatase of spinach chloroplasts, J. Biol. Chem. 246: 5952 (1971).Google Scholar
  82. 82.
    L. E. Anderson and J. X. Duggan, Light modulation of glucose-6-phosphate dehydrogenase: its effects on the properties of the chloroplastic and cytoplasmic forms of the enzyme, Plant Physiol. 58: 135 (1976).CrossRefGoogle Scholar
  83. 83.
    D. Ben-Bassat and L. E. Anderson, Light induced release of bound glucose-6-phosphate dehydrogenase to the stroma in pea chloroplasts, Plant Physiol. 68: 279 (1981).CrossRefGoogle Scholar
  84. 84.
    L. E. Anderson, M. J. Hansen and J. B. Anderson, Light-dark modulation of phosphoglucomutase activity in pea leaf chloroplasts, Plant Physiol. 63:S-2 (1979).Google Scholar
  85. 85.
    L. E. Anderson, A. H. Mohamed, A. R. Ashton, R. Scheibe and M. 0. Duraini, Light modulation in chloroplasts: The light effect mediator system, in: “Proceedings, First International Conference on Thioredoxins”, P. Gadal and B. B. Buchanan, eds, in press.Google Scholar
  86. 86.
    S. C. Huber, Substrates and inorganic phosphate control: The light activation of NADP-glyceraldehyde-3 phosphate dehydrogenase and phosphoribulokinase in barley (Hordeum vulgare) chloroplasts, FEBS Lett. 92: 12 (1978).CrossRefGoogle Scholar
  87. 87.
    S. C. Huber, Effects of pH and other factors on the phosphate dependence of photosynthesis in spinach chloroplasts, Planta 149: 485 (1980).CrossRefGoogle Scholar
  88. 88.
    S. P. Robinson and D. A. Walker, The significance of light activation of enzymes during the inducation phase of photosynthesis in isolated chloroplasts, Arch. Biochem. Biophys. 202: 617 (1980).CrossRefGoogle Scholar
  89. 89.
    R. C. Leegood and D. A. Walker, Photosynthetic induction in cheat protoplasts and chloroplasts. Autocatalysis and light activation of enzymes, Plant Cell Environment 4: 59 (1981).CrossRefGoogle Scholar
  90. 90.
    S. A. Charles and B. Halliwell, Light activation of fructose bisphosphatase in photosynthetically competent pea chloroplasts, Biochem. J. 200: 357 (1981).Google Scholar
  91. 91.
    W. Wirtz, M. Stitt and H. W. Heldt, Light activation of Calvin cycle enzymes as measured in pea leaves, FEBS Lett. 142: 223 (1982).CrossRefGoogle Scholar
  92. 92.
    T. Sugiyama and W. M. Laetsch, Occurence of pyruvate orthophosphate dikinase in the succulent plant, Kalanchoe daigremontiana Hamet. et. Perr., Plant Physiol. 56: 605 (1975).CrossRefGoogle Scholar
  93. 93.
    L. E. Anderson, Light inactivation of transaldolase in pea leaf chloroplasts, Biochem. Biophys. Res. Commun. 99: 1199 (1981).CrossRefGoogle Scholar
  94. 94.
    B. Heuer, M. J. Hansen and L. E. Anderson, Light modulation of phosphofructokinase in pea leaf chloroplasts, Plant Physiol. 69: 1404 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Louise E. Anderson
    • 1
  1. 1.Department of Biological SciencesUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations