Evolutionary Aspects of Photoresponsive Systems

  • Bernard F. Erlanger
Part of the NATO Advanced Science Institutes Series book series (NSSA, volume 68)

Abstract

A major factor in the survival of an organism is its ability to communicate with and respond to its environment. Among the environmental factors is a portion of the electromagnetic spectrum, from about 400 to 760 nm, which we define as visible light. In the course of evolution, many photoresponsive systems have developed, some highly complex, some relatively simple. Generally speaking, they have the capabilities of detecting the presence or absence of light, the direction of a light source and, in some cases, can even measure absolute quantities of visible light.

Keywords

Schiff Base Evolutionary Aspect Artificial Membrane Euglena Gracilis Photochromic Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.K. Clayton, Photophysiology 2: 51 (1964).Google Scholar
  2. 2.
    A. Perez-Miravete, “Behavior of Microorganisms,” Plenum Press, New York (1973).Google Scholar
  3. K.W. Foster and R.D. Smyth, Microbiol. Rev. 44:572 (1980).Google Scholar
  4. 4.
    B. Diehn in ref. 2.Google Scholar
  5. 5.
    A.D. Lees, Photophysiology 4: 47 (1968).Google Scholar
  6. 6.
    J. Brady, Adv. Insect Physiol. 10: 1 (1974).CrossRefGoogle Scholar
  7. 7.
    D.S. Farner, R.A. Lewis, Photophysiology 6: 325 (1971).Google Scholar
  8. 8.
    B. Lofts, B.K. Follett, R.K. Murton, Mem. Soc. Endocrinol. 18:545 (1970).Google Scholar
  9. 9.
    W. Shropshire, Jr., Photophysiology 7: 33 (1972).Google Scholar
  10. 10.
    W.R. Briggs and H.V. Rice, Ann. Rev. Plant Physiol. 23:293 (1972).Google Scholar
  11. 11.
    S.B. Hendricks, Photophysiology 1: 305 (1964).Google Scholar
  12. 12.
    K. Thimann, Compr. Biochem. 27:1 (1967).Google Scholar
  13. 13.
    R.Y. Moore, Nature 222: 781 (1969).Google Scholar
  14. 14.
    R.J. Wurtman, Ann. Rev. Physiol. 37: 467 (1975).CrossRefGoogle Scholar
  15. 15.
    F. Melberg, Proc. Roy. Soc. Med. 56:253 (1963).Google Scholar
  16. 16.
    D.T. Krieger and F. Rizzo, Neuroendocrinology 8: 165 (1971).Google Scholar
  17. 17.
    F.S. Messiha, T. Hartman and I. Geller, Res. Comm. Path. Pharmacol. 10:399 (1975).Google Scholar
  18. 18.
    D. Oesterhelt, Angew. Chemie Int. Ed. Engl. 15:17 (1976).Google Scholar
  19. 19.
    E. Racker and W. Stoeckenius, J. Biol. Chem. 249:662 (1974).Google Scholar
  20. 20.
    M. Melkonium and H. Robenik, J. Ultrastruct. Res. 72:129 (1980).Google Scholar
  21. 21.
    G.G. Leedale, B.J.D. Meeuse and E.G. Pringsheim, Arch. Mikrobiol. 50:68 (1965).Google Scholar
  22. 22.
    R. M. Eakin, in “Visual Cells in Evolution,” J.A. Westfall, ed., Raven Press, New York (1982).Google Scholar
  23. 23.
    L.v. Salvini-Plawen, in ref. 22.Google Scholar
  24. 24.
    F.F. Litvin, 0.A. Sineshchekov and V.A. Sineshchekov, Nature 271: 476 (1978).Google Scholar
  25. 25.
    S. Yoshikami, J.S. George and W.A. Hagins, Nature 286: 395 (1980).CrossRefGoogle Scholar
  26. 26.
    J.J. Wolken, “Invertebrate Photoreceptors,” Academic Press, New York/London (1971).Google Scholar
  27. 27.
    B.F. Erlanger, Ann. Rev. Biochem. 45:267 (1976).Google Scholar
  28. 28.
    W. Shropshire, Jr., Photophysiology 7: 33 (1972).Google Scholar
  29. 29.
    W.R. Briggs and H.V. Rice, Ann. Rev. Plant Physiol. 23:293 (1972).Google Scholar
  30. 30.
    G.H. Brown in “Photochromism,” Vol. III, “Techniques in Chemistry,” A. Weissberger, ed., Wiley-Interscience, New York (1971).Google Scholar
  31. 31.
    B.F. Erlanger and N.H. Wassermann, in “Trends in Photobiology,” C. Helene, M. Charlier, Th. Montenay-Garestier and G. Laustriat, eds., Plenum Press, New York and London (1982).Google Scholar
  32. 32.
    F. Lenci in ref. 31.Google Scholar
  33. 33.
    R.M. Page and G.M. Curry, Photochem. Photobiol.5:31 (1966).Google Scholar
  34. 34.
    A.Q. van Zon, W.P.J. Overmeer and A.Veerman, Science 213: 1131 (1981).Google Scholar
  35. 35.
    W.F. Zimmerman and T.H. Goldsmith, Science 171: 1167 (1971).Google Scholar
  36. S.B. Hendricks and H.A. Borthwick, Proc. Nat. Acad. Sci. 58:2125 (1967).Google Scholar
  37. 37.
    P.H. Quail in ref. 31.Google Scholar
  38. 38.
    M.J. Burke, D.C. Pratt and A. Moscowitz, Biochemistry 11: 4025 (1972).CrossRefGoogle Scholar
  39. 39.
    W.-F. Tong and P. Schopfer, Proc. Nat. Acad. Sci. 73:4017 (1976).Google Scholar
  40. 40.
    J.K. Lanyi, Microbiol. Rev. 42:682 (1978).Google Scholar
  41. 41.
    R.R. Birge, Ann. Rev. Biophys. Bioeng. 10:315 (1981).Google Scholar
  42. 42.
    L. Packer, A.T. Quintanilha, C. Carmeli, P.D. Sullivan, P. Scherrer, S. Tristram, J. Herz, A.Pfeifhofer and R.J. Mehlhorn, Photochem. Photobiol. 33:579 (1981).Google Scholar
  43. 43.
    Y.A. Ovchinnikov, N.G. Abdulaev, M.Y. Feigina, A.V. Kiselev and N.A. Lobanov, FEBS Lett. 100: 219 (1979).CrossRefGoogle Scholar
  44. 44.
    G.P. Hess and J.A. Rupley, Ann. Rev. Biochem. 40:1013 (1971). 44a J.T. Edsall and J. Wyman, “Biophysical Chemistry,” Vol. 1, Academic Press, New York (1958).Google Scholar
  45. 45.
    B.F. Erlanger, A.G. Cooper and W. Cohen, Biochemistry 5: 190 (1966).CrossRefGoogle Scholar
  46. 46.
    M. Chabre in ref. 31.Google Scholar
  47. 47.
    W.L. Hubbell and M.D. Bownds, Ann. Rev. Neurosci. 2:17 (1979).Google Scholar
  48. 48.
    D.H. Hug, Photochem. Photobiol. Rev. 3:1 (1978).Google Scholar
  49. 49.
    J. Monod, J-P. Changeux and F. Jacob, J. Mol. Biol. 6:306 (1963).Google Scholar
  50. 50.
    D.E. Koshland and K.E. Neet, Annu. Rev. Biochem. 37:359 (1968).Google Scholar
  51. 51.
    H.E. Umbarger, Annu. Rev. Biochem. 47:533 (1978).Google Scholar
  52. 52.
    G. Montagnoli, S. Monti, L. Nannicini, M.P. Giovannitti and M.G. Ristori, Photochem. Photobiol. 27:43 (1978).Google Scholar
  53. 53.
    M. Aizawa, K. Namba and S. Suzuki, Arch. Biochem. Biophys. 180:41 (1977).Google Scholar
  54. 54.
    M. Blank, L.M. Soo, N.H. Wassermann and B.F. Erlanger, Science 214: 70 (1981).Google Scholar
  55. 55.
    S. Shinkai, T. Nakaji, Y. Nishida, T. Ogawa and 0. Manabe, J. Am. Chem. Soc. 102:5860 (1980).Google Scholar
  56. 56.
    S. Shinkai, T. Nakaji, T. Ogawa, K. Shigematsu and 0. Manabe, J. Am. Chem. Soc. 103:111 (1981).Google Scholar
  57. 57.
    S. Shinkai, T. Ogawa, Y. Kusano, 0. Manabe, K. Kikukawa, T. Goto and T. Matsuda, J. Am. Chem. Soc. 104:1960 (1982).Google Scholar
  58. 58.
    S. Shinkai, T. Minami, Y. Kusano and 0. Manabe, J. Am. Chem. Soc. 104:1967 (1982).Google Scholar
  59. 59.
    J.J. Grimaldi, S. Boileau and J-M. Lehn, Nature 265: 229 (1977).CrossRefGoogle Scholar
  60. 60.
    J.S. Schultz, Science 197: 1177 (1977).CrossRefGoogle Scholar
  61. 61.
    I.V. Berezin, S.D. Varfolomeyev, A.M. Klibanov and K. Martinek, FEBS Lett. 39: 329 (1974).CrossRefGoogle Scholar
  62. 62.
    S.D. Varfolomeyev, A.M. Klibanov, K. Martinek and I.V. Berezin, FEBS Lett. 15: 118 (1971).CrossRefGoogle Scholar
  63. 63.
    J.M. Mountz and H.T. Tien, Photochem. Photobiol. 29:93 (1979).Google Scholar
  64. 64.
    J.R. Duchek and J.S. Huebner, Biophys. J. 27:317 (1979).Google Scholar
  65. 65.
    D. Balasubramanian, S. Subramani and C. Kumar, Nature 254: 252 (1975).CrossRefGoogle Scholar
  66. 66.
    W. Zillig, R. Schnabel and J. Tu, Naturwissenschaften 69: 197 (1982).CrossRefGoogle Scholar
  67. 67.
    D. Kennedy, Photophysiology 2: 79 (1964).Google Scholar
  68. 68.
    A. Arvanitaki and N. Chalazonitis, in “Nervous Inhibition,” E. Florey, ed., pp. 194–231 New York: Pergamon (1961).Google Scholar
  69. 69.
    C.L. Prosser, J. Cell.Comp. Physiol. 4:363 (1934).Google Scholar
  70. 70.
    M.S. Bruno and D. Kennedy, Comp. Biochem. Physiol. 6:41 (1962).Google Scholar
  71. 71.
    R.F. Furchgott, W. Sleator,Jr., M.W. McCaman and J. Elchlepp, J. Pharmacol. Exp. Ther. 113:22 (1955).Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Bernard F. Erlanger
    • 1
  1. 1.Department of Microbiology, Cancer Ctr/Inst. Cancer Res.Columbia UniversityNew YorkUSA

Personalised recommendations