The Structure and Function of Some Unusual Variable Antenna Complexes

  • R. J. Cogdell
  • A. M. Hawthornthwaite
  • L. A. Ferguson
  • M. B. Evans
  • M. Li
  • A. Gardiner
  • R. C. Mackenzie
  • J. P. Thornber
  • R. A. Brunisholz
  • H. Zuber
  • R. van Grondelle
  • F. van Mourik
Part of the FEMS Symposium book series (FEMSS)

Abstract

In purple photosynthetic bacteria the extent of the development of the photosynthetic apparatus is regulated by environmental conditions, such as the light-intensity at which the cells are grown.1,2 In the two most commonly studied species, Rhodobacter sphaeroides and Rhodobacter capsulatus the effect of growing cells at different light-intensities has been well documented.1–3 The major response to lowering the light-intensity is the increased synthesis of the variable B800-850-complexes (the LH2 complexes). There are however a number of less well-studied species that not only regulate the size of their photosynthetic units in response to changes in the ambient environment, but also have the ability to alter the type of LH2 complex which is synthesised.4–6 Chromatium vinosum, Rhodopseudomonas palustris and Rhodopseudomonas acidophila are examples of species which show this type of response. The ability to synthesise these extra kinds of antenna complexes appears to correlate with the capacity of these species to grow at very low light-intensities. It is interesting that these different types of LH2 complex have unusual absorption spectra.

Keywords

Rhodobacter Sphaeroides Antenna Complex Rhodopseudomonas Palustris Antenna Type Purple Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Aagaard and W.R. Sistrom, Control of the synthesis of reaction centre bacteriochlorophyll in photosynthetic bacteria, Photochem. Photobiol., 15:209 (1972).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Oelze and G. Drews, Membranes of phototropic bacteria, in: “Organisation of prokaryotic cell membranes,” B.K. Ghosh, ed., CRC Press, Boca Raton, Florida (1981).Google Scholar
  3. 3.
    G. Drews, Structure and functional organisation of light-harvesting complexes and photochemical reaction centres in membranes of phototropic bacteria, Microbiol. Rev., 49: 59 (1985).PubMedGoogle Scholar
  4. 4.
    H. Hayashi, T. Nozawa, M. Hatano and S. Morita, Circular dichroism of bacteriochlorophyll a in light-harvesting bacteriochlorophyll protein complexes from Chromatium vinosum, J. Biochem., 89: 1853 (1981).PubMedGoogle Scholar
  5. 5.
    H. Hayashi, M. Nakono and S. Morita, Comparative studies of protein properties and bacteriochlorophyll contents of bacteriochlorophyll-protein complexes from spectrally different types of Rhodopseudomonas palustris. J. Biochem., 92: 1805 (1982).PubMedGoogle Scholar
  6. 6.
    R.J. Cogdell, I. Durant, J. Valentine, J.G. Lindsay and K. Schmidt, The isolation and partial characterisation of the light-harvesting pigment-protein complement of Rhodopseudomonas acidophila, Biochim. Biophys. Acta, 722:427 (1983).CrossRefGoogle Scholar
  7. 7.
    J.F. Imhoff and H.G. Truper, Chromatium purpuratum, sp. nov., a new species of the Chromatiacae, Zbl. Baklt. I. Abt. Orig., C1: 61 (1980).Google Scholar
  8. 8.
    F. van Mourik, A.M. Hawthornthwaite, C. Vonk, M.B. Evans, R.J. Cogdell and R. van Grondelle, Spectroscopic characterisation of the low light B800–850 light-harvesting complex of Rhodopseudomonas palustris, Biochim. Biophys. Acta in press (1989).Google Scholar
  9. 9.
    H. Zuber, Primary structure and function of light-harvesting polypeptides, Ency. Pl. Physiol., 19: 238 (1982).Google Scholar
  10. 10.
    R.J. Cogdell, Light-harvesting complexes in purple photosynthetic bacteria. Ency. Pl. Physiol., 19: 252 (1982).Google Scholar
  11. 11.
    R.A. Brunisholz, I. Bissig, E. Niederer, F. Suter and H. Zuber, Structural studies on the light-harvesting polypeptides of Rhodopseudomonas acidophila, in: “Progress in Photosynthesis Research,” J. Biggins ed., Martinus Nijhoff, The Hague (1987).Google Scholar
  12. 12.
    M.H. Tadros and K. Waterkamp, Multiple copies of the coding regions for the light-harvesting B800–850 a-and ß-polypeptides are present in the Rhodopseudomonas palustris genome, EMBO J., 8: 1303 (1989)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • R. J. Cogdell
    • 1
  • A. M. Hawthornthwaite
    • 1
  • L. A. Ferguson
    • 1
  • M. B. Evans
    • 1
  • M. Li
    • 1
  • A. Gardiner
    • 1
  • R. C. Mackenzie
    • 1
  • J. P. Thornber
    • 2
  • R. A. Brunisholz
    • 3
  • H. Zuber
    • 3
  • R. van Grondelle
    • 4
  • F. van Mourik
    • 4
  1. 1.Botany DepartmentGlasgow UniversityGlasgowUK
  2. 2.Biology DepartmentUCLALos AngelesUSA
  3. 3.Molecular Biology & BiophysicsETH HönggerbergZürichSwitzerland
  4. 4.Biophysics DepartmentFree University of AmsterdamThe Netherlands

Personalised recommendations