Methods of Electronic Structure Theory pp 339-386 | Cite as

# The Equations of Motion Method: An Approach to the Dynamical Properties of Atoms and Molecules

## Abstract

This chapter is concerned with the equations of motion method as a many-body approach to the dynamical properties of atoms and molecules. In a wide range of spectroscopic experiments one is primarily concerned with just dynamical properties. These dynamical properties include excitation energies and oscillator strengths in optical spectroscopy, the dynamic or frequency-dependent polarizability in light scattering studies, photoionization cross sections, and elastic and inelastic electron scattering cross sections. These experiments probe the response of an atom or molecule to some external perturbation. If one is concerned with these properties one should develop a formalism which aims directly at these properties. Of course this idea is not novel. For example, one might try to calculate the appropriate Green’s functions whose poles, and residues at these poles, are directly the excitation energies and transitions densities, respectively. One could also attempt to solve the time-dependent Schrödinger equation directly, e.g., in the time-dependent Hartree—Fock approximation. The approach to these dynamical properties of atoms and molecules which we will discuss is based on the equations of motion formalism as suggested by Rowe.^{(1)} This is a very practical formalism based on the equations of motion for excitation operators defined as operators that convert one stationary state of a system into another state.

## Keywords

Excitation Energy Oscillator Strength Electron Affinity Internuclear Distance Potential Energy Curve## Preview

Unable to display preview. Download preview PDF.

## References

- 1.D. J. Rowe, Equations-of-motion method and the extended shell model,
*Rev. Mod. Phys.***40**, 153–166 (1968).CrossRefGoogle Scholar - 2.T. Shibuya and V. McKoy, Higher random phase approximation as an approximation to the equations of motion,
*Phys. Rev. A***2**, 2208–2218 (1970).CrossRefGoogle Scholar - 3.T. Shibuya, J. Rose, and V. McKoy, Equations-of-motion method including renormalization and double-excitation mixing,
*J. Chem. Phys.***58**, 500–507 (1973).CrossRefGoogle Scholar - 4.J. Rose, T. Shibuya, and V. McKoy, Application of the equations-of-motion method to the excited states of N
_{2}, CO, and C_{2}H_{4},*J. Chem. Phys.***58**, 74–83 (1973).CrossRefGoogle Scholar - 5.C. W. McCurdy, Jr. and V. McKoy, Equations of motion method: Inelastic electron scattering for helium and CO
_{2}in the Born approximation,*J. Chem. Phys.***61**, 2820–2826 (1974).CrossRefGoogle Scholar - 6.D. L. Yeager and V. McKoy, Equations of motion method: Excitation energies and intensities of formaldehyde,
*J. Chem. Phys.***60**, 2714–2716 (1974).CrossRefGoogle Scholar - 7.J. Rose, T. Shibuya, and V. McKoy, Electronic excitations of benzene from the equations of motion method,
*J. Chem. Phys.***60**, 2700–2702 (1974).CrossRefGoogle Scholar - 8.D. J. Rowe, General variational equations for stationary and time-dependent states,
*Nucl. Phys. A***107**, 99–105 (1968).CrossRefGoogle Scholar - 9.D. J. Rowe,
*Nuclear Collective Motion, Models, and Theory*, Methuen and Co. Ltd., London (1970).Google Scholar - 10.See, for example, A. L. Fetter and J. D. Walecka,
*Quantum Theory of Many-Particle Systems*, McGraw-Hill, New York (1971).Google Scholar - 11.P. H. S. Martin, W. H. Henneker, and V. McKoy, Dipole properties of atoms and molecules in the random phase approximation,
*J. Chem. Phys.***62**, 69–79 (1975).CrossRefGoogle Scholar - 12.D. J. Thouless, Vibrational states of nuclei in the random phase approximation,
*Nucl. Phys.***22**, 78–95 (1961).CrossRefGoogle Scholar - 13.D. L. Yeager and V. McKoy, An equations of motion approach for open shell systems,
*J. Chem. Phys.***63**, 4861 (1975).CrossRefGoogle Scholar - 14.W. J. Hunt, T. H. Dunning Jr., , and W. A. Goddard, The orthogonality constrained basis set expansion method for treating off-diagonal Lagrange multipliers in calculations of electronic wave functions,
*Chem. Phys. Lett.***3**, 606–610 (1969).CrossRefGoogle Scholar - 15.P. Jorgensen, Electronic excitations of open-shell systems in the grand canonical and canonical time-dependent Hartree—Fock models. Applications on hydrocarbon radical ions,
*J. Chem. Phys.***57**, 4884–4892 (1972).CrossRefGoogle Scholar - 16.L. Armstrong Jr., An open-shell random phase approximation,
*J. Phys. B***7**, 2320–2331 (1974).CrossRefGoogle Scholar - 17.W. Coughran, J. Rose, T. Shibuya, and V. McKoy, Equations of motion method: Potential energy curves for N2, CO, and C
_{2}H_{4},*J. Chem. Phys.***58**, 2699–2709 (1973).CrossRefGoogle Scholar - 18.K. Dressler, The lowest valence and Rydberg states in the dipole-allowed absorption spectrum of nitrogen. A survey of their interactions.
*Can. J. Phys.***47**, 547–561 (1969).CrossRefGoogle Scholar - 19.H. Lefebvre-Brion, Theoretical study of homogeneous perturbations. II. Least-squares fitting method to obtain “deperturbed” crossing Morse curves. Application to the perturbed
^{1}Σ states of N_{2},*Can. J. Phys.***47**, 541–546 (1969).CrossRefGoogle Scholar - 20.E. Lassettre and A. Skerbele, Absolute generalized oscillator strengths for four electronic transitions in carbon monoxide,
*J. Chem. Phys*.**54**, 1597–1607 (1971).CrossRefGoogle Scholar - 21.K. N. Klump and E. N. Lassettre, Relative vibrational intensities for the
*B*^{1}*Σ*^{+}*F-X 1Σ+*transition in carbon monoxide,*J. Chem. Phys.***60**, 4830–4832 (1974).CrossRefGoogle Scholar - 22.The basis set used in these calculations is different from that of Ref. 4. See Ref. 15 for details.Google Scholar
- 23.G. Herzberg, T. Hugo, S. Tilford, and J. Simmons, Rotational analysis of the forbidden
*d*^{3}_{i}F-*X*^{1Σ+}absorption bands of carbon monoxide,*Can. J. Phys.***48**, 3004–3015 (1970).CrossRefGoogle Scholar - 24.P. H. Krupenie and S. Weiss, Potential energy curves for CO and CO
^{+},*J. Chem. Phys.***43**, 1529–1534 (1965).CrossRefGoogle Scholar - 25.V. D. Meyer, A. Skerbele, and E. N. Lassettre, Intensity distribution in the electron-impact spectrum of carbon monoxide at high-resolution and small scattering angles,
*J. Chem. Phys.***43**, 805–816 (1965).CrossRefGoogle Scholar - 26.M. J. Mumma, E. J. Stone, and E. C. Zipf, Excitation of the CO fourth positive band system by electron impact on carbon monoxide and carbon dioxide,
*J. Chem. Phys.***54**, 2627–2634 (1971).CrossRefGoogle Scholar - 27.P. G. Wilkinson, Absorption spectra of ethylene and ethylene-d
_{4}in the vacuum ultraviolet. II.*Can. J. Phys.***34**, 643–652 (1956).CrossRefGoogle Scholar - 28.C. F. Bender, T. H. Dunning Jr., , H. F. Schaefer III, W. A. Goddard III, and W. J. Hunt, Multiconfiguration wavefunctions for the lowest
*(iπππ*)*excited states of ethylene,*Chem. Phys. Lett.***15**, 171–178 (1972).CrossRefGoogle Scholar - 29.R. J. Buenker and S. D. Peyerimhofif, All-valence-electron CM calculations for the characterization of the
^{1}(iπ, iT*) states of ethylene, in press.Google Scholar - 30.M. Inokuti, Inelastic collisions of fast charged particles with atoms and molecules. The Bethe theory revisited,
*Rev. Mod. Phys*.**43**, 297–347 (1971).CrossRefGoogle Scholar - 31.E. N. Lassettre and J. C. Shiloff, Collision cross-section study of CO
_{2},*J. Chem. Phys.***43**, 560–571 (1965).CrossRefGoogle Scholar - 32.J. W. Rabalais, J. M. McDonald, V. Scherr, and S. P. McGlynn, Electronic spectroscopy of isoelectronic molecules. II. Linear triatomic groupings containing sixteen valence electrons,
*Chem. Rev.***71**, 73–108 (1971).CrossRefGoogle Scholar - 33.For the results of extensive CI calculations, see N. W. Winter, C. F. Bender, and W. A. Goddard III, Theoretical assignments of the low-lying electronic states of carbon dioxide,
*Chem. Phys. Lett.***20**, 489–492 (1973).CrossRefGoogle Scholar - 34.M. Krauss, S. R. Mielczarek, D. Neumann, and C. E. Kuyatt, Mechanism for production of the fourth positive band system of CO by electron impact on CO
_{2},*J. Geophys. Res.***76**, 3733–3737 (1971).CrossRefGoogle Scholar - 35.G. M. Lawrence, Photodissociation of CO
_{2}to produce CO(a^{3}II),*J. Chem. Phys.***56**, 3435–3442 (1972).CrossRefGoogle Scholar - 36.V. J. Hammond and W. C. Price, Oscillator strengths of the vacuum ultraviolet absorption bands of benzene and ethylene,
*Trans. Faraday Soc.***51**, 605–610 (1955).CrossRefGoogle Scholar - 37.See, for example, E. Clementi and A. D. McLean, Atomic negative ions,
*Phys. Rev.***133**, A419-A423 (1964).CrossRefGoogle Scholar - 38.D. L. Yeager, Ph.D. candidacy examination report, California Institute of Technology, March 1972.Google Scholar
- 39.J. Simons and W. D. Smith, Theory of electron affinities of small molecules,
*J. Chem. Phys.***58**, 4899–4907 (1973).CrossRefGoogle Scholar - 40.L. S. Cederbaum, G. Hohlneicher, and W. V. Niessen, Improved calculations of ionization potentials of closed-shell molecules,
*Mol. Phys.***26**, 1405–1424 (1973).CrossRefGoogle Scholar - 41.G. D. Purvis and Y. Ohπn, Atomic and molecular electronic spectra and properties from the electron propagator,
*J. Chem. Phys.***60**, 4063–4069 (1974).CrossRefGoogle Scholar - 42.D. L. Yeager, Ph.D. thesis, California Institute of Technology (February 1975).Google Scholar
- 43.T. Chen, W. Smith and J. Simons, Theoretical studies of molecular ions. Vertical ionization potentials of the nitrogen molecule,
*Chem. Phys. Lett.***26**, 296–300 (1974).CrossRefGoogle Scholar - 44.W. Smith, T. Chen, and J. Simons, Theoretical studies of molecular ions. Vertical ionization potentials of hydrogen fluoride,
*J. Chem. Phys.***61**, 2670–2674 (1974).CrossRefGoogle Scholar - 45.W. D. Smith, T. Chen, and J. Simons, Theoretical studies of molecular ions. Vertical detachment energy of OH
^{-},*Chem. Phys. Lett.***27**, 499–502 (1974).CrossRefGoogle Scholar - 46.J. T. Broad and W. P. Reinhardt,Calculation of photoionization cross sections using L
^{2}basis sets,*J. Chem. Phys.***60**, 2182–2183 (1974).CrossRefGoogle Scholar - 47.T. N. Rescigno, C. W. McCurdy, and V. McKoy, Calculation of helium photoionization in the random phase approximation using square-integrable basis functions,
*Phys. Rev. A***9**, 2409–2412 (1974).CrossRefGoogle Scholar - 48.P. H. S. Martin, T. N. Rescigno, V. McKoy, and W. H. Henneker, Photoionization cross sections for H
_{2}in the random phase approximation with a square-integrable basis,*Chem. Phys. Lett.***29**, 496–501 (1974).CrossRefGoogle Scholar - 49.P. W. Langhoff, Stieltjes imaging of atomic and molecular photoabsorption profiles,
*Chem. Phys. lett.***22**, 60–64 (1973).CrossRefGoogle Scholar - 50.P. W. Langhoff and C. T. Corcoran, Stieltjes imaging of photoabsorption and dispersion profiles,
*J. Chem. Phys.***61**, 146–159 (1974).CrossRefGoogle Scholar - 51.A. Dalgarno, H. Doyle, and M. Oppenheimer, Calculation of photoabsorption processes in helium,
*Phys. Rev. Lett.***29**, 1051–1052 (1972).CrossRefGoogle Scholar - 52.H. Doyle, M. Oppenheimer, and A. Dalgarno, Bound-state expansion method for calculating resonance and nonresonance contributions to continuum processes: Theoretical development and application to the photoionization of helium,
*Phys Rev. A***11**, 909 (1975).CrossRefGoogle Scholar - 53.M. Ya. Amus’ya, N. A. Cherepkov, and L. V. Chernysheva, Cross sections for the photo-ionization of noble-gas atoms with allowance for multielectron correlations,
*Soy. Phys.-JETP***33**, 90–96 (1971).Google Scholar - 54.M. J. Jamieson, Time-dependent Hartree-Fock theory for atoms,
*Int. J. Quantum Chem.***S4**, 103–115 (1971).Google Scholar - 55.P. L. Altick and A. E. Glassgold, Correlation effects in atomic structure using the random phase approximation, Phys. Rev.
**133**, A632-A646 (1964).CrossRefGoogle Scholar - 56.P. W. Langhoff and M. Karplus, Padé approximants to the normal dispersion expansion of dynamic polarizabilities,
*J. Chem. Phys.***52**, 1435–1449 (1970).CrossRefGoogle Scholar - 57.U. Fano and J. W. Cooper, Spectral distribution of atomic oscillator strengths,
*Rev. Mod. Phys.***40**, 441–507 (1968).CrossRefGoogle Scholar - 58.The quadrature-like approximation implicit in the use of an
*L*^{2}*-basis*set has been examined in the context of Fredholm scattering calculations. See E. J. Heller, T. N. Rescigno, and W. P. Reinhardt, Extraction of accurate scattering information from Fredholm determinants calculated in an L^{2}basis: A Chebyschev discretization of the continuum,*Phys. Rev. A***8**, 2946–2951 (1973).CrossRefGoogle Scholar - 59.L. Schlessinger and C. Schwartz, Analyticity as a useful computational tool,
*Phys. Rev. Lett.***16**, 1173–1174 (1966).CrossRefGoogle Scholar - 60.L. Schlessinger, Use of analyticity in the calculation of nonrelativistic scattering amplitudes,
*Phys. Rev.***167**, 1411–1423 (1968).CrossRefGoogle Scholar - 61.H. S. Wall,
*The Analytic Theory of Continued Fractions*, Van Nostrand, Princeton, New Jersey (1968).Google Scholar - 62.D. L. Yeager, M. Nascimento, and V. McKoy, Some applications of excited state-excited state transition densities,
*Phys. Rev. A11*, 1168 (1975).CrossRefGoogle Scholar - 63.Y. M. Chan and A. Dalgarno, The dipole spectrum and properties of helium,
*Proc. Phys. Soc. London***86**, 777–782 (1965).CrossRefGoogle Scholar - 64.J. A. R. Samson, The measurement of the photoionization cross sections of the atomic gases, in:
*Advances in Atomic and Molecular Physics*, Vol. 2, pp. 177–261, Academic Press, New York (1966).Google Scholar - 65.D. W. Norcross, Photoionization of the metastable states,
*J. Phys. B***4**, 652–657 (1971).CrossRefGoogle Scholar - 66.V. L. Jacobs, Photoionization from excited states of helium,
*Phys. Rev. A***9**, 1938–1946 (1974).CrossRefGoogle Scholar - 67.R. F. Stebbings, F. B. Dunning, F. K. Tittel, and R. D. Rundel, Photoionization of helium metastable atoms near threshold,
*Phys. Rev. Lett.***30**, 815–817 (1973).CrossRefGoogle Scholar - 68.P. H. S. Martin, W. H. Henneker, and V. McKoy, Second-order optical properties and Van der Waals coefficients of atoms and molecules in the random phase approximation,
*Chem. Phys. Lett.***27**, 52–56 (1974).CrossRefGoogle Scholar - 69.A. L. Ford and J. C. Broione, Direct-resolvent-operator computations on the hydrogen’molecule dynamic polarizability, Rayleigh, and Raman scattering,
*Phys. Rev. A7*, 418–426 (1973).CrossRefGoogle Scholar - 70.L. Wolniewicz, Theoretical investigation of the transition probabilities in the hydrogen molecule,
*J. Chem. Phys.***51**, 5002–5008 (1969).CrossRefGoogle Scholar - 71.G. R. Cook and P. H. Metzger, Photoionization and absorption cross sections of H
_{2}and D, in the vacuum ultraviolet region,*J. Opt. Soc. Am.***54**, 968–972 (1964).CrossRefGoogle Scholar - 72.J. A. R. Samson and R. B. Cairns, Total absorption cross sections of H
_{2}, N_{2}, and 0_{2}in the region 550–200 A,*J. Opt. Soc. Am.***55**, 1035 (1965).Google Scholar - 73.R. E. Rebbert and P. Ausloos, Ionization quantum yields and absorption coefifiicients of selected compounds at 58.4 and 73.6–74.4 nm,
*J. Res. Nat. Bur. Stand. Sect A.***75A**, 481–485 (1971).Google Scholar - 74.H. P. Kelly, The photoionization cross section for H
_{2}from threshold to 30 eV,*Chem. Phys. Lett.***20**, 547–550 (1973).CrossRefGoogle Scholar - 75.See P. G. Burke and M. J. Seaton, Numerical solutions of the integro-differential equations of electron—atom collision theory,
*in : Methods of Computational Physics*(B. Alder, S. Fernbach, and M. Rotenberg, eds.), Vol. 10, pp. 1–80, Academic Press, New York (1971).Google Scholar - 76.A. L. Fetter and K. M. Watson, The optical model,
*in : Advances in Theoretical Physics*(K. Brueckner, ed.), Vol. 1, pp. 115–194, Academic Press, New York (1965).Google Scholar - 77.H. Feshbach, A unified theory of nuclear reactions,
*Ann. Phys. (N. Y.)***5**, 357–390 (1958);CrossRefGoogle Scholar - 77.H. Feshbach, A unified theory of nuclear reactions. II,
*Ann. Phys. (N.Y.)***14**, 287–313 (1962).CrossRefGoogle Scholar - 78.J. S. Bell and E. J. Squires, A formal optical model,
*Phys. Rev. Lett.***3**, 96–97 (1959).CrossRefGoogle Scholar - 79.B. Schneider, H. S. Taylor, and R. Yaris, Many-body theory of the elastic scattering of electrons from atoms and molecules,
*Phys. Rev. A*1, 855–867 (1970).CrossRefGoogle Scholar - 80.B. S. Yarlagadda, Gy. Csanak, H. S. Taylor, B. Schneider, and R. Yaris, Application of many-body Green’s functions to the scattering and bound-state properties of helium,
*Phys. Rev. A*7, 146–154 (1973).CrossRefGoogle Scholar - 81.C. W. McCurdy, T. N. Rescigno, and V. McKoy, A many-body treatment of Feshbach theory applied to electron—atom and electron—molecule collisions,
*Phys. Rev. A***12**, 406 (1975).CrossRefGoogle Scholar - 82.K. Dietrich and K. Hara, On the many-body theory of nuclear reactions,
*Nucl. Phys. A*111, 392–416 (1968).Google Scholar - 83.T. N. Rescigno, C. W. McCurdy, and V. McKoy, Discrete basis set approach to nonspherical scattering,
*Chem. Phys. Len*,**27**, 401–404 (1974);Google Scholar - 83.T. N. Rescigno, C. W. McCurdy, and V. McKoy, Discrete basis set approach to nonspherical scattering. II,
*Phys. Rev. A***10**, 2240–2245 (1974).CrossRefGoogle Scholar - 84.T. N. Rescigno, C. W. McCurdy, and V. McKoy, Low-energy e
^{-}-H_{2}elastic scattering cross sections using discrete basis functions,*Phys. Rev. A*11, 825–829 (1975).CrossRefGoogle Scholar - 85.T. N. Rescigno, C. W. McCurdy, and V. McKoy, A relationship between the many-body theory of inelastic scattering and the distorted wave,
*J. Phys. B7*, 2396–2402 (1974).CrossRefGoogle Scholar - 86.See for example, J. R. Taylor,
*Scattering Theory*, p. 720, J. Wiley and Sons, New York (1972).Google Scholar - 87.Gy. Csanak, H. S. Taylor, and R. Yaris, Many-body methods applied to electron scattering from atoms and molecules. II. Inelastic processes,
*Phys. Rev. A*3, 1322–1328 (1971).CrossRefGoogle Scholar - 88.L. D. Thomas, B. S. Yarlagadda, Gy. Csanak, and H. S. Taylor, Analytical and numerical procedures in the application of many-body Green’s function methods to electron—atom scattering problems,
*Comput. Phys. Comm*.*6*, 316–330 (1973)CrossRefGoogle Scholar - 88a.L. D. Thomas, B. S. Yarlagadda, Gy. Csanak, and H. S. Taylor The application of first order many-body theory to the calculation of differential and integral cross sections for the electron impact excitation of the 2
^{1}S, 2^{1}P, 2^{3}S, 2^{3}P states of helium,*J. Phys. B***7**, 1719–1733 (1974).CrossRefGoogle Scholar - 89.T. N. Rescigno, C. W. McCurdy, and V. McKoy, Excitation of the
*b*^{3Σu}state of H_{2}by low energy electron impact in the distorted wave approximation (in preparation).Google Scholar - 90.J. C. Tully and R. S. Berry, Elastic scattering of low energy electrons by the hydrogen molecule,
*J. Chem. Phys.51*, 2056–2075 (1969).CrossRefGoogle Scholar - 91.B. Schneider, Inelastic scattering of high-energy electrons from atoms: The helium atom,
*Phys. Rev. A*2, 1873–1877 (1970).CrossRefGoogle Scholar - 92.A. Szabo and N. S. Ostlund, Generalized oscillator strengths for the lowest H F- Σ transitions in CO and N2,
*Chem. Phys. Lett.*17, 163–166 (1972).CrossRefGoogle Scholar