The Direct Configuration Interaction Method from Molecular Integrals

  • Björn O. Roos
  • Per E. M. Siegbahn
Part of the Modern Theoretical Chemistry book series (MTC, volume 3)

Abstract

In this paper we will address ourselves to some aspects of the problem of finding accurate solutions to the electronic Schrödinger equation by means of the configuration interaction (CI) method. This method is probably one of the most encouraging for general studies of molecular systems in their ground and excited states, and also for studies of energy surfaces for chemical reactions.

Keywords

Coupling Coefficient Correlation Energy Configuration Interaction Integral Type Configuration Interaction Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. F. Boys, Electronic wave functions, I. A general method of calculation for the stationary states of any molecular system, Proc. R. Soc. London, Ser. A 200, 542–554 (1950).CrossRefGoogle Scholar
  2. 2.
    S. F. Boys, Electronic wave functions. II. A calculation for the ground state of the beryllium atom, Proc. R. Soc. London, Ser. A 201, 125–137 (1950).CrossRefGoogle Scholar
  3. 3.
    D. R. Hartree, W. Hartree, and B. Swirles, Self-consistent field, including exchange and superposition of configurations with some results for oxygen, Philos. Trans. R. Soc. London, Ser. A 238, 229–247 (1939).CrossRefGoogle Scholar
  4. 4.
    E. A. Hylleraas, Neue Berechnung der Energie des Heliums im Grundzustande, sowie des tiefsten Terms von Ortho-Helium, Z. Phys. 54, 347–366 (1929).CrossRefGoogle Scholar
  5. 5.
    A. P. Jucys, On the Hartree—Fock method in multi-configuration approximation, Adv. Chem. Phys. 14, 191–206 (1969) (atoms).CrossRefGoogle Scholar
  6. 6.
    G. Das and A. C. Wahl, Extended Hartree—Fock wavefunctions: Optimized valence configurations for H2 and Li2, optimized double configurations for F2, J. Chem. Phys. 44, 87–96 (1966) (diatomic molecules).CrossRefGoogle Scholar
  7. 7.
    T. L. Gilbert, Multiconfigurational self-consistent-field theory for localized orbitals. I. The orbital equation, Phys. Rev. A6, 580–600 (1972). A thorough discussion of the subject can also be found in Ref. 30.CrossRefGoogle Scholar
  8. 8.
    B. Roos, A new method for large scale CI calculations, Chem. Phys. Lett. 15, 153 (1972).CrossRefGoogle Scholar
  9. 9.
    B. Roos and P. Siegbahn, in : Chemical and Biochemical Reactivity, the Jerusalem Symposia on Quantum Chemistry and Biochemistry, VI, The Israel Academy of Sciences and Humanities, Jerusalem (1974).Google Scholar
  10. 10.
    J. Almlöf, B. Roos, and P. Siegbahn, the Program System Molecule, Reference Manual (to be published).Google Scholar
  11. 11.
    J. K. L. MacDonald, Successive approximations by the Rayleigh—Ritz variation method, Phys. Rev. 43, 830–833 (1933).CrossRefGoogle Scholar
  12. 12.
    H. J. Silverstone and O. Sinanoglu, Many-electron theory of nonclosed-shell atoms and molecules. I. Orbital wave function and perturbation theory, J. Chem. Phys. 44, 1899–1907 (1966);CrossRefGoogle Scholar
  13. 12a.
    H. J. Silverstone and O. Sinanoglu, Many-electron theory of nonclosed-shell atoms and molecules. II. Variational theory, J. Chem. Phys. 44, 3608–3617 (1966).CrossRefGoogle Scholar
  14. 13.
    P.-O. Löwdin, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction, Phys. Rev. 97, 1474–1489 (1955).CrossRefGoogle Scholar
  15. 14.
    A. J. Coleman, Structure of fermion density matrices, Rev. Mod. Phys. 35, 668–689 (1963).CrossRefGoogle Scholar
  16. 15.
    A. D. McLean and B. Liu, Classification of configurations and the determination of interacting and noninteracting spaces in configuration interaction, J. Chem. Phys. 58, 1066–1078 (1973).CrossRefGoogle Scholar
  17. 16.
    O. Sinanoďlu, Many-electron theory of atoms and molecules. I. Shells, electron pairs versus many-electron correlations, J. Chem. Phys. 36, 706 (1962).CrossRefGoogle Scholar
  18. 17.
    W. Meyer, PNO—CI studies of electron correlation effects. I. Configuration expansion by means of nonorthogonal orbitals, and application to the ground state and ionized states of methane, J. Chem. Phys. 58, 1017–1035 (1973).CrossRefGoogle Scholar
  19. 18.
    R. McWeeny and B. T. Sutcliffe, Methods of Molecular Quantum Mechanics, Academic Press, London (1969).Google Scholar
  20. 19.
    B. Liu and P. Siegbahn, An accurate three-dimensional potential surface for H3, to be published.Google Scholar
  21. 20.
    C. Bender, private communication.Google Scholar
  22. 21.
    R. K. Nesbet, Algorithm for diagonalization of large matrices, J. Chem. Phys. 43, 311–312 (1965).CrossRefGoogle Scholar
  23. 22.
    I. Shavitt, C. F. Bender, A. Pipano, and R. P. Hosteny, The iterative calculation of several of the lowest or highest eigenvalues and corresponding eigenvectors of very large symmetric matrices, J. Comput. Phys.11, 90–108 (1973).CrossRefGoogle Scholar
  24. 23.
    P.-O. Löwdin, Studies in perturbation theory IX. Upper bounds to energy eigenvalues in Schrödinger,s perturbation theory, J. Math. Phys. 6, 1341–1353 (1965).CrossRefGoogle Scholar
  25. 24.
    E. Brôndas and O. Goscinski, Variation-perturbation expansions and Padé-approximants to the energy, Phys. Rev. A 6, 552–560 (1970).CrossRefGoogle Scholar
  26. 25.
    O. Goscinski and E. Brändas, in : Theory of Electronic Shells of Atoms and Molecules, Report from the Vilnius International Symposium, 1969, Mintis, Vilnius (1971).Google Scholar
  27. 26.
    R. J. Bartlett and E. J. Brändas, Reduced partitioning procedure in configuration interaction studies. II. Excited states, J. Chem. Phys. 59, 2032–2042 (1973).CrossRefGoogle Scholar
  28. 27.
    E. R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices, J. Comput. Phys. 17, 87–94 (1975).CrossRefGoogle Scholar
  29. 28.
    V. R. Saunders and I. H. Hillier, A “level-shifting” method for converging closed shell Hartree—Fock wave functions, Int. J. Quantum Chem. 7, 699–705 (1973).CrossRefGoogle Scholar
  30. 29.
    V. R. Saunders and M. F. Guest, in : Proceedings of SRC Atlas Symposium No. 4, “Quantum Chemistry—the State of the Art” (V. R. Saunders and J. Brown, eds.), Atlas Computer Laboratory, Chilton Didcot, Oxfordshire (1975).Google Scholar
  31. 30.
    J. Hinze, MC-SCF. I. The multi-configurational self-consistent-field method, J. Chem. Phys. 59, 6424–6432 (1973).CrossRefGoogle Scholar
  32. 31.
    P. S. Bagus, B. Liu, A. D. McLean, and M. Yoshimine,in: Wave Mechanics the First Fifty Years (W. C. Price, S. S. Chissik, and T. Ravensdale, eds.), pp. 88–98, Butterworth & Co., London (1973).Google Scholar
  33. 32.
    C. Edminston and M. Krauss, Pseudonatural orbitals as a basis for the superposition of configurations. I. Hthaythe, J. Chem. Phys. 45, 1833–1839 (1966).CrossRefGoogle Scholar
  34. 33.
    W. P. Reinhardt and J. D. Doll, Direct calculation of natural orbitals by many-body perturbation theory: Application to helium, J. Chem. Phys. 50, 2767–2768 (1969).CrossRefGoogle Scholar
  35. 34.
    P. Dejardin, E. Kochanski, A. Veillard, B. Roos, and P. Siegbahn, MC—SCF and CI calculations for the ammonia molecule, J. Chem. Phys. 59, 5546–5553 (1973).CrossRefGoogle Scholar
  36. 35.
    P. Bertoncini and A. C. Wahl, Ab initio calculation of the helium-helium 1Σ potential at intermediate and large separations, Phys. Rev. Lett. 25, 991–994 (1970).CrossRefGoogle Scholar
  37. 36.
    H. F. Schaefer, D. R. McLaughlin, F. E. Harris, and B. J. Alder, Calculation of the attractive He pair potential, Phys. Rev. Lett. 25, 988–990 (1970).CrossRefGoogle Scholar
  38. 37.
    M. Yoshimine, The use of direct access devices in problems requiring the reordering of long data lists, IBM Corp. Tech. Rep. RJ 555 (1973).Google Scholar
  39. 38.
    F. E. Harris and H. H. Michels, Open-shell valence configuration-interaction studies of diatomic and polyatomic molecules, Int. J. Quantum Chem. 1, S 329–338 (1967).CrossRefGoogle Scholar
  40. 39.
    H. F. Schaefer and F. E. Harris, Ab initio calculations on 62 low-lying states of the O2 molecule, J. Chem. Phys. 48, 4946–4955 (1968).CrossRefGoogle Scholar
  41. 40.
    P. Siegbahn. in : Proceedings of SRC Atlas Symposium No. 4, “Quantum Chemistry—the State of the Art” (V. R. Saunders and J. Brown, eds.), Atlas Computer Laboratory, Chilton Didcot, Oxfordshire (1975).Google Scholar
  42. 41.
    W. Meyer, in : Proceedings of SRC Atlas Symposium No. 4, “Quantum Chemistry—the State of the Art” (V. R. Saunders and J. Brown, eds.), Atlas Computer Laboratory, Chilton Didcot, Oxfordshire (1975).Google Scholar
  43. 42.
    W. Meyer, Ionization energies of water from PNO-CI calculations, Int. J. Quantum Chem. 5, S 341–348 (1971).CrossRefGoogle Scholar
  44. 43.
    G. H. F. Diercksen, W. P. Kraemer, and B. Roos, SCF-CI Studies of correlation effects on hydrogen bonding and ion hydration, The systems: H20, HH+ • H2O, Li+ • H2O, F- • H2O and H2O • H2O, Theor. Chim. Acta 36, 249–274 (1975).CrossRefGoogle Scholar
  45. 44.
    G. H. F. Diercksen, W. P. Kraemer, and B. Roos, SCF-CI studies of the equilibrium structure and proton transfer barrier in H3Othaythe, Theor. Chim. Acta 42, 77–82 (1976).CrossRefGoogle Scholar
  46. 45.
    A. Stϕgård, A. Strich, J. Almlöf, and B. Roos, Correlation effects on hydrogen-bond potentials. SCF-CI calculations for the systems HFthaythe and H3Othaythe, Chem. Phys. 8, 405–411 (1975).CrossRefGoogle Scholar
  47. 46.
    J. Kowalewski and B. Roos, Large configuration interaction calculations of nuclear spin-spin coupling constants. III. Vibrational effects in ammonia, Chem. Phys. 11, 123–128 (1975).CrossRefGoogle Scholar
  48. 47.
    K. Niblaeus, private communication.Google Scholar
  49. 48.
    K. Niblaeus, B. Roos, and P. Siegbahn, An UHF-CI study of the H3O radical, to be published.Google Scholar
  50. 49.
    P. K. Pearson, G. L. Blackman, H. F. Schaefer III, B. Roos, and U. Wahlgren, HNC molecule in interstellar space? Some pertinent theoretical calculations, Astrophys. J. 184, L19-L22 (1973).CrossRefGoogle Scholar
  51. 50.
    A. D. McLean and P. Siegbahn, to be published.Google Scholar
  52. 51.
    R. F. Hausman, Jr., S. D. Bloom, and C. F. Bender, A new technique for describing the electronic states of atoms and molecules—the vector method, Chem. Phys. Lett. 32, 483–488 (1975).CrossRefGoogle Scholar
  53. 52.
    The original tables published in Ref. 8 were unfortunately incorrect. The authors are grateful to Dr. N. C. Handy for pointing out a number of these errors.Google Scholar
  54. 53.
    F. B. van Duijneveldt, Gaussian basis sets for the atoms H-Ne for use in molecular calculations, IBM Research Report RJ 945 (1971).Google Scholar
  55. 54.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58, 1925–1937 (1973).CrossRefGoogle Scholar
  56. 55.
    P. Siegbahn and H. F. Schaefer III, Potential energy surface for H + Li2 thaythe LiH + Li. I. Ground state surface from large scale configuration interaction, J. Chem. Phys. 62, 3488–3495 (1975).CrossRefGoogle Scholar
  57. 56.
    B. Liu and A. D. McLean, Accurate calculation of the attractive interaction of two ground state helium atoms, J. Chem. Phys. 59, 4557–4558 (1973).CrossRefGoogle Scholar
  58. 57.
    J. Kowalewski, B. Roos, P. Siegbahn, and R. Vestin, Large configuration interaction calculations of nuclear spin-spin coupling constants. I. HD molecule, Chem. Phys. 3, 70–77 (1974).CrossRefGoogle Scholar
  59. 58.
    J. Kowalewski, B. Roos, P. Siegbahn, and R. Vestin. Large configuration interaction calculations of nuclear spin-spin coupling constants. II. Some polyatomic molecules, Chem. Phys. 9, 29–39 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • Björn O. Roos
    • 1
  • Per E. M. Siegbahn
    • 1
  1. 1.Institute of Theoretical PhysicsUniversity of StockholmStockholmSweden

Personalised recommendations