How do Sperm Activate Eggs in Urechis (as Well as in Polychaetes and Molluscs)?

  • Meredith Gould
  • José Luis Stephano

Abstract

In this chapter we summarize data showing that sperm acrosomal protein activates Urechis eggs, causing a fertilization potential and morphological changes like those produced by sperm. We then review the evidence in Urechis that Ca2+ uptake and acid release at fertilization cause rises in intracellular Ca2+ and pH necessary for activation, and propose that both ion movements occur primarily through voltage-gated channels that open during the fertilization potential. Available data from related species (polychaetes and molluscs) relating to this model are also reviewed.

Keywords

Acrosome Reaction Germinal Vesicle Acid Release Fertilization Potential Germinal Vesicle Breakdown 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. D. 1953. Fertilization and artificial activation in the egg of the surf-clam, Spisula solidissima. Biol. Bull. 105: 213–239.CrossRefGoogle Scholar
  2. Alliegro, M. and D. Wright. 1983. Polyspermy inhibition in the oyster, Crassostrea virginica. J. Exp. Zool. 227: 127–137.CrossRefGoogle Scholar
  3. Barish, M. and C. Baud. 1984. A voltage-gated hydrogen ion current in the oocyte membrane of the axolotl, Ambystoma. J. Physiol. 352: 243–263.Google Scholar
  4. Baud, C., M. Moreau, and P. Guerrier. 1987. Ionic mechanism of the action potential and its disappearance after fertilization in the Dentalium egg. Dev. Biol. 122: 516–521.CrossRefGoogle Scholar
  5. Bloom, T., E. Szuts, and W. Eckberg. 1988. Insitol triphosphate, inositol phospholipid metabolism, and germinal vesicle breakdown in surf clam oocytes. Dev. Biol. 129: 532540.Google Scholar
  6. Brandriff, B., G. Moy, and V. Vacquier. 1978. Isolation of sperm bindin from the oyster (Crassostrea gigas). Gamete Res. 1: 89–99.CrossRefGoogle Scholar
  7. Brassard, M., H. Duclohier, M. Moreau, and P. Guerrier. 1988. Intracellular pH change does not appear as a prerequisite for triggering activation of Barnea candida (Mollusca, Pelecypoda) oocytes. Gamete Res. 20: 43–52.PubMedCrossRefGoogle Scholar
  8. Byerly, L., R. Meech, and W. Moody, Jr. 1984. Rapidly activating hydrogen ion currents in perfused neurones of the snail, Lymnaea stagnalis. J. Physiol. 351: 199–216.Google Scholar
  9. Conklin, E. G. 1904. Experiments on the origin of the cleavage centrosomes. Biol. Bull. 7: 221–226.CrossRefGoogle Scholar
  10. Cross, N. L., T. Slezynger, and L. Z. Holland. 1985. Isolation and partial characterization of Urechis caupo egg envelopes. J. Cell Sci. 74: 193–205.PubMedGoogle Scholar
  11. Dale, B. 1988. Primary and secondary messengers in the activation of ascidian eggs. Exp. Cell Res. 177: 205–211.PubMedCrossRefGoogle Scholar
  12. Dale, B., L. J. DeFelice, and G. Ehrenstein. 1985. Injection of a soluble sperm fraction into sea urchin eggs triggers the cortical reaction. Experientia 41: 1068–1070.PubMedCrossRefGoogle Scholar
  13. Dubé, F. 1988. The relationships between early ionic events, the pattern of protein synthesis, and oocyte activation in the surf clam, Spisula solidissima. Dev. Biol. 126: 233–241.CrossRefGoogle Scholar
  14. Dubé, F. and P. Guerrier. 1982a. Activation of Barnea candida (Mollusca, Pelecypoda) oocytes by sperm or KCI but not by NH,C1 requires a calcium influx. Dev. Biol. 92: 408–417.PubMedCrossRefGoogle Scholar
  15. Dubé, F. and P. Guerrier. 1982b. Acid release during activation of Barnea candida (Mollusca,Pelecypoda) ooycytes. Dev. Growth & Differ. 24: 163–171.CrossRefGoogle Scholar
  16. Dufresne-Dubé, L., B. Picheral, and P. Guerrier. I983a. An ultrastructural analysis of Dentalium vulgare (Mollusca, Scaphopoda) gametes with special reference to early events at fertilization. J. Ultrastruct. Res. 83: 242–257.Google Scholar
  17. Dufresne-Dubé, L., F. Dubé, P. Guerrier, and P. Couillard. 1983b. Absence of a complete block to polyspermy after fertilization of Mytilus galloprovincialis (Mollusca, Pelecypoda) oocytes. Dev. Biol. 97: 27–33.PubMedCrossRefGoogle Scholar
  18. Eckberg, W. and A. Carroll. 1982. Sequestered calcium triggers oocyte maturation in Chaetopterus. Cell Differ. 11: 155–160.CrossRefGoogle Scholar
  19. Ehrenstein, G., B. Dale, and L. J. DeFelice. 1984. A soluble fraction of sperm triggers cortical granule exocytosis in sea urchin eggs. Biophys. J. 45: 23a.Google Scholar
  20. Fallon, J. F. and C. R. Austin. 1967. Fine structure of gametes of Nereis limbata (Annelida) before and after interaction. J. Exp. Zool. 166: 225–242.PubMedCrossRefGoogle Scholar
  21. Finkel, T. and D. Wolf. 1980. Membrane potential, pH and the activation of surf clam oocytes. Gamete Res. 3: 299–304.CrossRefGoogle Scholar
  22. Gilman, A. 1987. G Proteins: transducers of receptor-generated signals. Annu. Rev. Biochem. 56: 615–649.PubMedCrossRefGoogle Scholar
  23. Gould, M. and L. Holland. 1984. Fertilization acid release in Urechis eggs II. The stoichiometry of Na’ uptake and H’ release. Dev. Biol. 104: 329–335.PubMedCrossRefGoogle Scholar
  24. Gould, M., J. L. Stephano, and L. Holland. 1986. Isolation of protein from Urechis sperm acrosomal granules that binds sperm to eggs and initiates development. Dev. Biol. 117: 306–318.CrossRefGoogle Scholar
  25. Gould, M. and J. L. Stephano. 1987. Electrical responses of eggs to acrosomal protein similar to those induced by sperm. Science. 235: 1654–1656.PubMedCrossRefGoogle Scholar
  26. Gould-Somero, M. 1981. Localized gating of egg Na’ channels by sperm. Nature (Lond.) 291: 254–256.CrossRefGoogle Scholar
  27. Gould-Somero, M. and L. Z. Holland. 1975a. Oocyte differentiation in Urechis caupo. (Echiura): A fine structural study. J. Morphol. 147: 475–506.PubMedCrossRefGoogle Scholar
  28. Gould-Somero, M. and L. Holland. 1975b. Fine structural investigation of the insemination response in Urechis caupo. Dev. Biol. 46: 358–369.CrossRefGoogle Scholar
  29. Gould-Somero, M., L. A. Jaffe, and L. Holland. 1979. Electrically mediated fast polyspermy block in eggs of the marine worm, Urechis caupo. J. Cell Biol. 82: 426–440.CrossRefGoogle Scholar
  30. Guerrier, P., C. Guierrier, I. Neant, and M. Moreau. 1986a. Germinal vesicle nucleoplasm and intracellular pH requirements for cytoplasmic maturity in oocytes of the prosobranch mollusk Patella vulgata. Dev. Biol. 116: 92–99.CrossRefGoogle Scholar
  31. Guerrier, P., M. Brassart, C. David, and M. Moreau. 1986b. Sequential control of meiosis reinitiation by pH and Ca’ in oocytes of the prosobranch mollusk Patella vulgata. Dev. Biol. 114: 315–324.CrossRefGoogle Scholar
  32. Hagiwara S. and L. A. Jaffe. 1979. Electrical properties of egg cell membranes. Annu. Rev. Biophys. Bioeng. 8:385–416. Google Scholar
  33. Hagiwara, S. and S. Miyazaki. 1977. Changes in excitability of the cell membrane during “differentiation without cleavage” in the egg of the annelid, Chaetopterus pergamontaceus. J. Physiol. 272: 197–216.Google Scholar
  34. Holland, L., M. Gould-Somero, and M. Paul. 1984. Fertilization acid release in Urechis eggs. I. The nature of the acid and the dependence of acid release and egg activation on external pH. Dev. Biol. 103: 337–342.PubMedCrossRefGoogle Scholar
  35. Holt, V. 1934. Further observations on the polarity of the eggs of Urechis caupo. Biol. Bull. 67:341–345. Google Scholar
  36. Humphreys, W. J. 1967. The fine structure of cortical granules in eggs and gastrulae of Mytilus edulis. J. Ultrastruct. Res. 17:314–326. Google Scholar
  37. Ii, I. and L. Rebhun. 1979. Acid release following activation of surf clam (Spisula solidissima) eggs. Dev. Biol. 72:195–200. Google Scholar
  38. Ikegami, S., T. S. Okada, and S. S. Koide. 1976. On the role of calcium ions in oocyte maturation in the polychaete Chaetopterus pergamentaceus. Dev. Growth & Differ. 18: 33–43.CrossRefGoogle Scholar
  39. Jaffe, L. A., M. Gould-Somero, and L. Z. Holland. 1979. Ionic mechanism of the fertilization potential of the marine worm, Urechis caupo (Echiura). J. Gen. Physiol. 73: 469–492.PubMedCrossRefGoogle Scholar
  40. Jaffe, L. A., M. Gould-Somero, and L. Z. Holland. 1982. Studies of the mechanism of the electrical polyspermy block using voltage clamp during cross-species fertilization. J. Cell Biol. 92: 616–621.PubMedCrossRefGoogle Scholar
  41. Jaffe, L. A., R. Kado, and L. Muncy. 1985. Propagating potassium and chloride conductances during activation and fertilization of the egg of the frog, Rana pipiens. J. Physiol. 368: 227–242.Google Scholar
  42. Jaffe, L. F. 1983. Sources of calcium in egg activation: a review and hypothesis. Dev. Biol. 99:265–276. Google Scholar
  43. Jaffe, L. F. 1985. The role of calcium explosions, waves, and pulses in activating eggs. p. 127165. In: Biology of Fertilization, Vol. 3. C. B. Metz and A. Monroy (Eds.). Academic Press, Orlando.Google Scholar
  44. Johnston, R. and M. Paul. 1977. Calcium influx following fertilization of Urechis caupo eggs. Dev. Biol. 57:364–374. Google Scholar
  45. Kline, D. and R. Nuccitelli. 1985. The wave of activation current in the Xenopus egg. Dev. Biol. 111:471–487. Google Scholar
  46. Meech, R. and R. C. Thomas. 1987. Voltage-dependent intracellular pH in Helix aspersa neurones. J. Physiol. 390:433–452. Google Scholar
  47. Ohe, Y., H. Hayashi, and K. Iwai. 1979. Human spleen histone H2B. Isolation and amino acid sequence. J. Biochem. (Tokyo). 85: 615–624.Google Scholar
  48. Osanai, K. 1976. Parthenogenetic activation of Japanese Pablo eggs with sperm extract. Bull. Mar. Biol. Stn. Asamushi. 15:157–163. Google Scholar
  49. Pasteels, J. 1966. La reaction corticale de fecondation de l’oeuf de Nereis diversicoloretudiee au microscope electronique. Acta. Embryo!. & Morphol. Exp. 6:166–163. Google Scholar
  50. Pasteels, J. J. and E. deHarven. 1962. Etude au microscope electronique du cortex de l’oeuf de Barnea candida (mollusque bivalve) et son evolution au moment de la fecondation, de la maturation et de la segmentation. Arch. Biol. 73: 465–490.Google Scholar
  51. Paul, M. 1975. Release of acid and changes in light scattering properties following fertilization of Urechis caupo eggs. Dev. Biol. 43:299–312. Google Scholar
  52. Paul, M. and M. Gould-Somero. 1976. Evidence for a polyspermy block at the level of sperm-egg plasma membrane fusion in Urechis caupo. J. Exp. Zool. 196: 105–112.CrossRefGoogle Scholar
  53. Peaucellier, G. 1977a. Mise en evidence du role du calcium dans la reinitiation de la meiose des ovocytes de Sabellaria alveolata (L.) (annelide polychete). C. R. Hebd. Seances Acad. Sci. Ser. D Sci. Nat. 285: 913–915.Google Scholar
  54. Peaucellier, G. I977b. Initiation of meiotic maturation by specific proteases in oocytes of the polychaete annelid Sabellaria alveolata. Exp. Cell Res. 106:1–14.Google Scholar
  55. Peaucellier, G. 1978. Acid release at meiotic maturation of oocytes in the polychaete annelid Sabellaria alveolata. Experientia 34: 789–790.CrossRefGoogle Scholar
  56. Rebhun, L. I. 1962. Electron microscope studies on the vitelline membrane of the surf clam, Spisula solidissima. J. Ultrastruct. Res. 6: 107–122.CrossRefGoogle Scholar
  57. Robertson, T. B. 1912. On the extraction of a substance from the sperm of a sea urchin (Stronglyocentrotus purpuratus) which will fertilize eggs of that species. Univ. Calif. Publ. Physiol. 4: 103–105.Google Scholar
  58. Schmidt, T., C. Patton, and D. Epel. 1982. Is there a role for the Cat` influx during fertilization of the sea urchin egg? Dev. Biol. 90: 284–290.PubMedCrossRefGoogle Scholar
  59. Suzuki, K. and T. Ando. 1972. The complete amino acid sequence of clupeine YI. J. Biochem. (Tokyo) 72:1419–1432. Google Scholar
  60. Tamaki, H. and K. Osanai. 1985. Re-initiation of meiosis in Mytilus oocytes with acrosome reaction product of sperm. Bull. Mar. Biol. Stn. Asamushi 18:11–23. Google Scholar
  61. Tyler, A. 1932. Changes in volume and surface of Urechis eggs upon fertilization. J. Exp. Zool. 63:155–173. Google Scholar
  62. Tyler, A. 1965. The biology and chemistry of fertilization. Am. Nat. 97: 309–334.CrossRefGoogle Scholar
  63. Tyler, A. and J. Schultz. 1932. Inhibition and reversal of fertilization in eggs of the echinoid worm, Urechis caupo. J. Exp. Zool. 63: 509–531.CrossRefGoogle Scholar
  64. Vacquier, V. and G. Moy. 1977. Isolation of bindin: the protein responsible for adhesion of sperm to sea urchin eggs. Proc. Natl. Acad. Sci. USA 74: 2456–2460.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Meredith Gould
    • 1
  • José Luis Stephano
    • 1
  1. 1.Escuela Superior de CienciasUniversidad Autónoma de Baja CaliforniaEnsenada, B.C.N.Mexico

Personalised recommendations