Thermodynamic and Transport Properties in the Hubbard Model

  • E. N. Economou
Part of the NATO Advanced Study Institutes Series book series (NSSB, volume 17)

Abstract

I present here a progress report on our study of the Hubbard model; in the present work the Hubbard Hamiltonian is approximated by a static, random, self-consistent potential which allows a quantitative treatment over the whole range of values of the relevant parameters.

Keywords

Ising Model HUBBARD Model Magnetic Order Impurity Band Local Moment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Mott in “Metal-Insulator Transitions,” Taylor and Francis, Ltd., London, 1974.Google Scholar
  2. 2.
    See e.g. I. F. Schegolev, Phys. Stat. Solidi Al2, 9 (1972);ADSGoogle Scholar
  3. 2a.
    V.K.S. Shante, C. M. Varma, and A. N. Bloch, Phys. Rev. B8, 4885 (1973);ADSCrossRefGoogle Scholar
  4. 2b.
    A. J. Epstein, S. Etemad, A. F. Garito and A. J. Heeger, Phys. Rev. B5, 952 (1972);ADSCrossRefGoogle Scholar
  5. 2c.
    L. B. Coleman, J. A. Cohen, A. F. Garito, and A. J. Heeger, Phys. Rev. B7, 2122 (1973).ADSCrossRefGoogle Scholar
  6. 3.
    J. Hubbard, Proc. Roy. Soc. A281, 401 (1964).ADSCrossRefGoogle Scholar
  7. 4.
    E. H. Lieb and F. Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).ADSCrossRefGoogle Scholar
  8. 5.
    M. Cyrot and P. Lacour-Gayet, Sol. St. Comm. 11, 1767 (1972);ADSCrossRefGoogle Scholar
  9. 5a.
    P. Lacour-Gayet and M. Cyrot, J. Phys. C7, 400 (1974).ADSGoogle Scholar
  10. 6.
    D. C. Licciardello and E. N. Economou, in preparation.Google Scholar
  11. 7.
    M. Plischke, Sol. Stat. Comm. 13, 393 (1973).ADSCrossRefGoogle Scholar
  12. 8.
    E. N. Economou and M. H. Cohen, Phys. Rev. B5, 2931 (1972);ADSCrossRefGoogle Scholar
  13. 8a.
    D. C. Licciardello and E. N. Economou, Phys. Rev. B11,3697(1975)ADSCrossRefGoogle Scholar
  14. 9.
    D. C. Licciardello and E. N. Economou, Sol. Stat. Comm. 12, 1275 (1973).ADSCrossRefGoogle Scholar
  15. 10.
    For a review see R. J. Elliot, J. A. Krumhansl, P. L. Leath, Rev. Mod. Phys. 46, 437 (1974).CrossRefGoogle Scholar
  16. 11.
    See, e.g. C. J. Thompson “Mathematical Statistical Mechanics” MacMillan Co., New York, 1972, Chapters 5 and 6.MATHGoogle Scholar
  17. 12.
    B. Velicky, Phys. Rev. 184, 614 (1969).ADSCrossRefGoogle Scholar
  18. 13.
    R. Demarco, C. White, E. N. Economou, in preparation.Google Scholar
  19. 14.
    C. White, E. N. Economou, in preparation.Google Scholar
  20. 15.
    Y. Toyozawa, J. Phys. Soc. Jap 17, 986 (1962);ADSCrossRefGoogle Scholar
  21. 15a.
    see also N. Ohata and R. Kubo, J. Phys. Soc. Jap 28, 1402 (1970);ADSCrossRefGoogle Scholar
  22. 15b.
    A. V. Matveenko, S. S. Shalyt, M. L. Shubnikov and V. S. Vekshina, Sov. Phys.-Semic. 5, 949 (1971).Google Scholar
  23. 16.
    E. N. Economou, D. C. Licciardello and K. L. Ngai, Contr. to “Phase Transitions–1973” ed. by H. K. Henisch, R. Roy and L. E. Cross, Pergamon Press, 1973.Google Scholar
  24. 17.
    W. F. Brinkman and T. M. Rice, Phys. Rev. B2, 1324 (1970); 4302 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • E. N. Economou
    • 1
  1. 1.Department of PhysicsUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations