Imaging Using Lenses

  • C. F. Quate

Abstract

There are several acoustic imaging systems which are designed to respond to the energy coming from a point source in the form of a spherically diverging wave. The field pattern of a given object can be thought of as a large number of point sources — each with a different amplitude and phase. Thus, if the imaging system can sequentially receive energy from each of these points on the image we can build up the entire pattern. In this chapter we will describe three such systems in order to give the reader some appreciation of the variety of ideas that have evolved. Each system uses a lens to focus on the point source and the scanning is carried out either by mechanical motion of the object through this focal point or by “electronic scanning” wherein the phase of the incoming signal as collected by an array is carefully adjusted to synthesize a spherical lens.

Keywords

Acoustic Wave Acoustic Surface Wave Delay Line Line Source Acoustic Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lemons, R. A. and Quate, C. F. “Acoustic Microscopy: Biomedical Applications”, Science, 188, 905 (May 30, 1975). Copyright 1975 by the American Association for the Advancement of Science.ADSGoogle Scholar
  2. 2.
    Lemons, R. A. and Quate, C. F. “Integrated Circuits as Viewed with an Acoustic Microscope”, Appl. Phys. Letters, 25, 251 (1 September, 1974).ADSCrossRefGoogle Scholar
  3. 3.
    Dunn, F. and Fry, W. J. “Ultrasonic Absorption Microscope”, J. Acoust. Soc. Amer., 31, 632 (1959).ADSCrossRefGoogle Scholar
  4. 4.
    Encyclopedia of Microscopy, Chapter entitled “Ultrasonic Microscope”, G. L. Clark, Editor, Reinhold, London (1961).Google Scholar
  5. 5.
    Sokolov, S. “The Ultrasonic Microscope”, Akademia Nauk SSSR, Doklady, 64, 333 (1949).Google Scholar
  6. 6.
    Carstensen, E. L., Li, K. and Schwan, H. P. “Determination of the Acoustic Properties of Blood and its Components”, J. Acoust. Soc. Amer., 25, 286 (1953).ADSCrossRefGoogle Scholar
  7. 7.
    Carstensen, E. L. and Schwan, H. P. “Acoustic Properties of Hemoglobin Solution”, J. Acoust. Soc. Amer., 31, 305 (March 1959).ADSCrossRefGoogle Scholar
  8. 8.
    Kessler, L. W. “VHF Ultrasonic Attenuation in Mammalian Tissue”, J. Acoust. Soc. Amer., 53, 1959 (1973)Google Scholar
  9. 8a.
    See also, Goldman, D. E. and Hueter, T. F. “Tabular Data of the Velocity and Absorption of High Frequency Sound in Mammalian Tissue”, J. Acoust. Soc. Amer., 28, 35 (1956).ADSCrossRefGoogle Scholar
  10. 9.
    Lees, S. and Barber, F. E. “Looking into the Tooth and its Surfaces with Ultrasonics”, Ultrasonics, 9, 95 (April 1971).CrossRefGoogle Scholar
  11. 10.
    Anderson, R. E. “Potential Medical Applications for Ultrasonic Holography”, in Acoustical Holography, 5, 505, P. S. Green, Editor, Plenum Press, New York (1974).Google Scholar
  12. 11.
    Korpel, A., Kessler, L. W. and Palermo, P. R. “Acoustic Microscope Operating at 100 MHz”, Nature, 232, 110 (1971).ADSCrossRefGoogle Scholar
  13. 12.
    Auld, B. A. et al. “A 1.1 GHz Scanned Acoustic Microscope”, in Acoustical Holography, 4, 73, G. Wade, Editor, Plenum Press, New York (1972).Google Scholar
  14. 13.
    Thompson, J. K., Wickramasinghe, H. K. and Ash, E. A. “A Fabry-Perot Acoustic Surface Vibration Detector — Application to Acoustic Holography”, J. Phys. D, Appl. Phys. 6, 677 (1973).ADSCrossRefGoogle Scholar
  15. 14.
    Cunningham, J. A. and Quate, C. F. “Acoustic Interference in Solids and Holographic Imaging”, in Acoustical Holography, 4, 667, G. Wade, Editor, Plenum Press, New York (1972)Google Scholar
  16. 14a.
    See also, Cunningham, J. A. and Quate, C. F. “High-Resolution High-Contrast Acoustic Imaging”, J. Physique, 33, Colloque C-6, Supplement, 42 (Nov-Dec. 1972).Google Scholar
  17. 15.
    Mueller, R. K. “Acoustic Holography”, Proc. IEEE, 59, 1319 (1971).CrossRefGoogle Scholar
  18. 16.
    Kessler, L. W. “Review of Progress and Applications to Acoustic Microscopy”, J. Acoust. Soc. Amer., 55, 909 (l9744).CrossRefGoogle Scholar
  19. 17.
    Korpel, A. “Acoustic Microscopy”, in Ultrasonic Imaging and Holography, G. W. Stroke et al. (editors), 345–362, Plenum Press, New York (1974).CrossRefGoogle Scholar
  20. 18.
    Cunningham, J. A. and Quate, C. F. “High-Resolution Acoustic Imaging by Contact Printing”, in Acoustical Holography, 5, 83, P. S. Green, Editor, Plenum Press, New York (1974).Google Scholar
  21. 19.
    Kessler, L. W., Palermo, P. R. and Korpel, A. “Recent Developments with a Scanning Laser Acoustic Microscope”, in Acoustical Holography, 5, 15, P. S. Green, Editor, Plenum Press New York 1974)Google Scholar
  22. 20.
    Lemons, R. A. and Quate, C. F. “A Scanning Acoustic Microscope”, 1973 Ultrasonics Symposium Proceedings, IEEE Cat. #73CH0807–8 SU, 18–21 (1974).Google Scholar
  23. 21.
    Lemons, R. A. and Quate, C. F. “Acoustic Microscope — Scanning Version” Appl. Phys. Letters, 24, 163 (15 February 1974).ADSCrossRefGoogle Scholar
  24. 22.
    Rand, S. C. and Stoicheff, B. P. “Brillouin Line Width and the Attenuation of Sound in Liquid Argon”, Physics Letters, 48A, 355 (15 July 1974).CrossRefGoogle Scholar
  25. 23.
    Herzfeld, K. F. and Litovitz, T. A. in Absorption and Dispersion of Ultrasonic Waves, Academic Press, New York (1959).Google Scholar
  26. 24.
    Squires, C. F. in Waves in Physical Systems, Sect. 6.2, Prentice Hall, New Jersey (1971).Google Scholar
  27. 25.
    Lamb, J. “Thermal Relaxation in Liquids”, in Physical Acoustics, II-A, 203, W. P. Mason, Editor, Academic Press, New York (1965).Google Scholar
  28. 26.
    Gwertz, S. et al. “Brillouin Spectra of Ethyl Ether and Carbon Disulphide”, J. Acoust. Soc. Amer., 49, 944 (1971).Google Scholar
  29. 27.
    Attal, J. Private communication.Google Scholar
  30. 28.
    Hall, L. “The Origin of Ultrasonic Absorption in Water”, Physical Review, 73, 775 (1 April, 1948).ADSCrossRefGoogle Scholar
  31. 29.
    Stuehr, J. and Yeager, E. “The Propagation of Ultrasonic Waves in Electrolytic Solutions”, in Physical Acoustics, II-B, 351, W. P. Mason, Editor, Academic Press, New York (1965).Google Scholar
  32. 30.
    Breitschwerdt, K. G. and Kistenmacher, H. “Ultrasonic Absorption and Molecular Motions in Ionic Solutions”, Journal of Chemical Physics, 56, 4800 (1972).ADSCrossRefGoogle Scholar
  33. 31.
    Carlson, J. Gordon, “Protoplasmic Viscosity Changes in Different Regions of the Grasshopper Neuroblast during Mitosis”, Biol. Bull., 90, 109 (1946).CrossRefGoogle Scholar
  34. 31.
    Carlson, J. Gordon, “Protoplasmic Viscosity Changes in Different Regions of the Grasshopper Neuroblast during Mitosis”, Biol. Bull., 90, 109 (1946). See also, Swanson, C. P. in Cytology and Cytogenetics 61, Figs. 3–10, Prentice Hall, New Jersey (1957).Google Scholar
  35. 32.
    Farnow, S. A. and Auld, B. A. “An Acoustic Phase Plate Imaging Device” presented at Sixth International Symposium on Acoustical Holography and Imaging, February 44–7, 1975, San Diego, California.Google Scholar
  36. 33.
    Kino, G. S. and Shaw, H. J. “Acoustic Surface Waves”, Scientific American, 227, 51 (October 1972).CrossRefGoogle Scholar
  37. 34.
    Havlice, J. F. et al. “An Electronically Focused Acoustic Imaging Device”, in Acoustical Holography, 5, 317, P. S. Green, Editor, Plenum Press, New York (1944).Google Scholar
  38. 35.
    Acoustical Holography, 5 P. S. Green, Editor, Plenum Press, New York (1974).Google Scholar
  39. 36.
    Photo, courtesy of W. P. Leung, H. J. Shaw and D. K. Winslow (unpublished).Google Scholar
  40. 37.
    Photo, courtesy of J. D. Fraser, T. M. Waugh and G. S. Kino (unpublished).Google Scholar
  41. 38.
    See Chapters 7 and 8 of this text.Google Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • C. F. Quate
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations