The Hamster pp 323-361 | Cite as

Biological Rhythms

  • Lawrence P. Morin

Abstract

The most widely studied category of hamster biological rhythms is that for which the expected period is 24 hr. Such rhythms are considered to be true “circadian rhythms” if the periodicity of the event deviates slightly from 24 hr in the absence of known time-giving cues (Zeitgebern). Without a Zeitgeber, rhythms such as that for locomotor activity will assume a frequency unconstrained by an external synchronizing agent. This “free run” (Fig. 1) is considered to demonstrate an endogenous, self-sustained oscillation with a period near 24 hr, thus, a circadian rhythm. Timing for such a rhythm is presumed to be derived from a circadian “clock.” The existence of such clocks is now generally accepted, although a contrary view does exist (see Brown, 1976; Brown and Scow, 1978).

Keywords

Circadian Rhythm Circadian Clock Estrous Cycle Phase Advance Golden Hamster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers, H. E., Carter, D. S., Darrow, J. M., and Goldman, B. D., 1982, Circadian rhythms of body temperature and wheelrunning in the Turkish hamster (Mesocricetus brandti), Society for Neuroscience 12th Annual Meeting Minneapolis, Minnesota, Abstr. 14. 11.Google Scholar
  2. Albers, H. E., Ferris, C. F., Leeman, S. E., and Goldman, B. D., 1984, Avian pancreatic polypeptide phase shifts hamster circadian rhythms when microinjected into the suprachiasmatic region, Science 223: 833–835.PubMedCrossRefGoogle Scholar
  3. Alleva, J. J., Waleski, M. V., and Alleva, F. R., 1971, A biological clock controlling the estrous cycle of the hamster, Endocrinology. 88: 1368–1379.PubMedCrossRefGoogle Scholar
  4. Andrews, R. V., 1968, Temporal secretory responses of cultured hamster adrenals, Comp. Biochem. Physiol. 26: 179–193.PubMedCrossRefGoogle Scholar
  5. Andrews, R. V., 1971, Circadian rhythms in adrenal organ cultures, Gegenbours Morph. Jahrh. Leipzig 117: 89–98.Google Scholar
  6. Andrews, R. V., 1980, Phase response profile of hamster adrenal organ cultures treated with ACTH and exogenous steroid, Comp. Biochem. Physiol. 67A: 257–277.CrossRefGoogle Scholar
  7. Andrews, R. V., and Folk, G. E., 1964, Circadian metabolic patterns in cultured hamster adrenal glands, Comp. Biochem. Physiol. 11: 393–409.PubMedCrossRefGoogle Scholar
  8. Aschoff, J., 1960, Exogenous and endogenous components in circadian rhythms, Cold Spring Harbor Symp. Quant. Biol. 25: 11–27.PubMedCrossRefGoogle Scholar
  9. Aschoff, J., 1965, Circadian vocabulary, in: Circadian Clocks ( J. Aschoff, ed.), North Holland, Amsterdam, pp. x—xix.Google Scholar
  10. Aschoff, J., 1978, Circadian rhythms: Influences of internal and external factors on the period measured in constant conditions, Z. Tierpsychol. 49: 225–249.CrossRefGoogle Scholar
  11. Aschoff, J., Figala, J., and Poppel, E., 1973, Circadian rhythms in locomotor activity in the golden hamster (Mesocricetus auratus) measured with two different techniques, J. Comp. Physiol. Psycho!. 85: 20–28.CrossRefGoogle Scholar
  12. Aschoff, J., Hoffmann, K., Pohl, H., and Weyer, R., 1975, Re-entrainment of circadian rhythms after phase-shifts of the Zeitgeber, Chronobiologia 2: 23–78.PubMedGoogle Scholar
  13. Aschoff, J., Gerecke, U., Von Goetz, C., Groos, G. A., and Turek, F. W., 1982, Phase responses and characteristics of free-running activity rhythms in the golden hamster: Independence of the pineal gland, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan, and G. Groos, eds.), Springer-Verlag, Berlin, pp. 129–140.CrossRefGoogle Scholar
  14. Baranczuk, R. and Greenwald, G. S., 1973, Peripheral levels of estrogen in the cyclic hamster, Endocrinology 92: 805–812.PubMedCrossRefGoogle Scholar
  15. Beasley, L. J., and Nelson, R. J., 1982, Thyroid gland influences the period of hamster circadian oscillations, Experientia 28: 870–871.CrossRefGoogle Scholar
  16. Berk, M. L., and Finkelstein, J. A., 1981, An autoradiographie determination of the efferent projections of the suprachiasmatic nucleus of the hypothalamus, Brain Res. 226: 1–13.PubMedCrossRefGoogle Scholar
  17. Bittman, E. L., 1978, Photoperiodic influences on testicular regression in the golden hamster: Termination of scotorefractoriness, Biol. Reprod. 17: 971–977.Google Scholar
  18. Borer, K. T., Rowland, N., Mirow, A., Borer, R. C., Jr., and Kelch, R. P., 1980, Physiological and behavioral responses to starvation in the golden hamster, Am. J. Physiol. 236: E105 — E112.Google Scholar
  19. Borer, K. T., Campbell, C. S., Gordon, L., Jorgenson, K., and Tabor, J., 1981, Exercise reinstates estrous cycles in hamsters maintained in short photoperiod, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abstr. 70. 14.Google Scholar
  20. Boulos, Z., and Morin, L. P., 1982, Entrainment of split circadian rhythms in hamsters. Society for Neuroscience 12th Annual Meeting, Minneapolis, Abst. 151. 10.Google Scholar
  21. Boulos, Z., and Rusak, B., 1982, Circadian phase response curves for dark pulses in the hamster, J. Comp. Physiol. 146: 411–417.CrossRefGoogle Scholar
  22. Brown, F. A., 1976, Evidence for external timing of biological clocks, in: An Introduction to Biological Rhythms ( J. D. Palmer, Ed.), Academic, New York, pp. 209–279.Google Scholar
  23. Brown, F. A., and Scow, K. M., 1978, Magnetic induction of a circadian cycle in hamsters, J. Interdiscip. Cycle Res. 9: 137–145.CrossRefGoogle Scholar
  24. Brown, J. M., and Berry, R. J., 1968, The relationship between diurnal variation of the number of cells in mitosis and of the number of cells synthesizing DNA in the epithelium of the hamster cheek pouch, Cell Tissue Kinet. 1: 23–33.Google Scholar
  25. Bruce, V. G., 1960, Environmental entrainment of circadian rhythms, Cold Spring HarborSymp. Quant. Biol. 25: 29–47.CrossRefGoogle Scholar
  26. Bunning, E., 1936, Die endonome Tagesperiodik als Grundlage der photoperiodischen Reaktion, Ber. Dtsch. Bot. Ges. 54: 590–607.Google Scholar
  27. Bunning, E., 1958, Das Weiterlaufen der “physiologischen Uhr” im Saugerdarm ohne zentrale Steuerung, Naturwissenschaften 45: 68.CrossRefGoogle Scholar
  28. Burns, J. T., and Meier, A. H., 1981, A circadian rhythm in insulin overdose in the golden hamster (Mesocricetus auratus), in: Chronopharntacology and Chronotherapeutics ( C. A. Walker, K. F. A. Soliman, and C. M. Winget, eds.), Florida A, M University Foundation, Tallahassee, pp. 315–318Google Scholar
  29. Campbell, C. S., Finkelstein, J. S., and Turek, F. W., 1978, The interaction of photoperiod and testosterone on the development of copulatory behavior in castrated male hamsters, Physiol. Behar. 21: 409–415.CrossRefGoogle Scholar
  30. Card, J. P., and Moore, R. Y., 1982, Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity, J. Comp. Neurol. 206: 390–396.PubMedCrossRefGoogle Scholar
  31. Card, J. P., and Moore, R. Y., 1984, The suprachiasmatic nuclei of the golden hamster: Immunohistochemical analysis of cell and fiber distribution, Neuroscience,in press.Google Scholar
  32. Carlisle, G., 1975, Entrainment of circadian activity rhythms of female golden hamsters after lesions in the lateral geniculate nucleus, unpublished undergraduate honors thesis in psychology, Univ. California, Berkeley.Google Scholar
  33. Carmichael, M. S., and Zucker, I., 1982, Entrainment to non-24-hr days and gestation length of golden hamsters, J. Reprod. Fertil. 66: 691–693.PubMedCrossRefGoogle Scholar
  34. Carmichael, M. S., Nelson, R. J., and Zucker, I., 1981, Hamster activity and estrous cycles: Control by a single versus multiple circadian oscillator(s), Proc. Natl. Acad. Sci. 78: 7830–7834.PubMedCrossRefGoogle Scholar
  35. Chaudhry, A. P., Halberg, F., Keeman, C. E., Harner, R. N., and Bittner, J. J., 1958, Daily rhythms in rectal temperature and in epithelial mitoses of hamsterpinna and pouch, J. Appl. Physiol. 12: 221–224.PubMedGoogle Scholar
  36. Craig, C., Tamarkin, L., Garrick, N., and Wehr, T. A., 1981, Long-term and short-term effects of clorgyline (a monoamine oxidase type A inhibitor) on locomotor activity and pineal melatonin in hamster, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abst. #229. 14.Google Scholar
  37. Daan, S., and Aschoff, J., 1975, Circadian rhythms of locomotor activity in captive birds and mammalian activity rhythms, J. Theor. Biol. 70: 592–597.Google Scholar
  38. Daan, S., and Pittendrigh, C. S., 1976a, A functional analysis of circadian pacemakers in nocturnal rodents.Google Scholar
  39. II. The variability of phase response curves, J. Comp. Physiol. 106: 253–266.Google Scholar
  40. Daan, S., and Pittendrigh, C. S., 19766, A functional analysis of circadian pacemakers in nocturnal rodents.Google Scholar
  41. III. Heavy water and constant light: Homeostasis of frequency? J. Comp. Physiol. 106:267–290. Daan, S., and Slopsema, S., 1978, Short-term rhythms in foraging behavior of the common vole, Microtus arvalis, J. Comp. Physiol. 127: 215–227.Google Scholar
  42. Dark, J., 1980, Partial isolation of the suprachiasmatic nuclei: Effects on circadian rhythms of rat drinking behavior, Physiol. Behay. 25: 863–873.CrossRefGoogle Scholar
  43. Davis, F. C., and Gorski, R. A., 1981, Functional symmetry of the suprachiasmatic nuclei, Society for Neuroscience 11th Annual Meeting, Los Angeles, Abstr. #18. 13.Google Scholar
  44. Davis, F. C., and Gorski, R. A., 1982, Perinatal entrainment of hamster circadian rhythms, Society for Neuroscience 12th Annual Meeting, Minneapolis, Abstr. 14. 10.Google Scholar
  45. Davis, F. C., and Menaker, M., 1980, Hamsters through time’s window: Temporal structure of hamster locomotor rhythmicity, Am. J. Physiol. 239: R149–R155.PubMedGoogle Scholar
  46. Davis, F. C., Darrow, J. M., and Menaker, M., 1983, Sex differences in the circadian control of hamster wheelrunning activity, Am. J. Physiol. 244: R93–R 104.Google Scholar
  47. Davis, G. J., and Meyer, R. K., 1973, FSH and LH in the Snowshoe hare during the increasing phase of the 10-year cycle, Gen. Comp. Endocrinol. 20: 53–60.PubMedCrossRefGoogle Scholar
  48. DeCoursey, P. J., 1960, Phase control of activity in a rodent, Symp. Quant. Biol. 25: 49–54.CrossRefGoogle Scholar
  49. DeCoursey, P. A., 1964, Function of a light response rhythm in hamsters, J. Cell. Comp, Physiol. 63: 189–196.Google Scholar
  50. Dewsbury, D. A., 1968, Copulatory behavior of rats—Variations within the dark phase of the diurnal cycle, Commun. Behar. Biol. AI: 373–377.Google Scholar
  51. Earnest, D. J., and Turek, F. W., 1982, Splitting of the circadian rhythm of activity in hamsters: Effects of exposure to constant darkness and subsequent re-exposure to constant light,/ Comp. Physiol. 145: 405–411.CrossRefGoogle Scholar
  52. Earnest, D. J., and Turek, F. W., 1983a, Role for acetylcholine in mediating effects of light on reproduction, Science 219: 77–79.PubMedCrossRefGoogle Scholar
  53. Earnest, D. J., and Turek, F. W., 1983b, Effect of one-second light pulses on testicular function and locomotor activity in the golden hamster, Biol. Reprod. 28: 557–565.PubMedCrossRefGoogle Scholar
  54. Eichler, V. B., and Moore, R. Y., 1971, The primary and accessory optic systems in the golden hamster, Mesocricetus araums, Arta Anat. 89: 359–371.CrossRefGoogle Scholar
  55. Elliott, J. A., 1974, Photoperiodic regulation of testis function in the golden hamster: Relation to the circadian system, Ph.D. Dissertation, University of Texas.Google Scholar
  56. Elliott, J. A., 1976, Circadian rhythms and photoperiodic time measurement in mammals, Fed. Proc. 35: 2339–2346.Google Scholar
  57. Elliott, J. A., Stetson, M. H., and Menaker, M., 1972, Regulation of testis function in golden hamsters: A circadian clock measures photoperiodic time, Science 178: 771–773.PubMedCrossRefGoogle Scholar
  58. Ellis, G. B., and Turek, F. W., 1979, Changes in locomotor activity associated with the photoperiodic response of the testes in male golden hamsters, J. Comp. Physiol. 132: 277–284.CrossRefGoogle Scholar
  59. Ellis, G. B., and Turek, F. W., 1981, Testosterone and the photoperiod interact to regulate daily locomotor activity in male golden hamsters, Fed, Proc. 40: 307.Google Scholar
  60. Ellis, G. B., McKlveen, R. E., and Turek, F. W., 1982, Dark pulses affect the circadian rhythm of activity in hamsters kept in constant light, Am. J. Physiol. 242: R44 — R50.PubMedGoogle Scholar
  61. Eriksson, L. 0., 1973, Spring inversion of the diel rhythm of locomotor activity in young sea-going trout (Selmo trutta trutta L.) and Atlantic salmon (Salmo salar L.), Aquilo Ser. Zool. 14: 68–79.Google Scholar
  62. Eskes, G. A., 1982, Significance of daily cycles in sexual behavior of the male golden hamster, in: Vertebrate Circadian Systems (J. Aschoff, S. Daan, and G. Groos, eds.), Springer-Verlag, New York, pp. 347–353.CrossRefGoogle Scholar
  63. Eskes, G. A., and Zucker, I., 1978, Photoperiodic regulation of the hamster testis: Dependence on circadian rhythms, Proc. Natl. Acad. Sci. 75: 1034–1038.PubMedCrossRefGoogle Scholar
  64. Everett, J. W., Sawyer, C. H., and Markee, J. E., 1949, A neurogenic timing factor in control of the ovulatory discharge of luteinizing hormone in the cyclic rat, Endocrinology 44: 234–250.PubMedCrossRefGoogle Scholar
  65. Finkelstein, J. S., Baum, F. R., and Campbell, C. S., 1978, Entrainment of the female hamster to reversedphotoperiod: Role of the pineal, Physiol. Behar. 21: 105–111.Google Scholar
  66. Fitzgerald, K. M., and Zucker, I., 1976, Circadian organization of the estrous cycle of the golden hamster, Proc. Natl. Acad. Sci. 73: 2923–2927.Google Scholar
  67. Fitzgerald, K., Zucker, I., and Rusak, B., 1978, An evaluation of homeostasis of circadian periodicity in the golden hamster, J. Comp. Physiol. 123: 265–269.CrossRefGoogle Scholar
  68. Folk, G. E., Schellinger, R. R., and Snyder, D., 1961, Day-night changes after exercise in body temperature and heart rates of hamsters, Iowa Acad. Sci. 68: 594–602.Google Scholar
  69. Follett, B. K., Earner, D. S., and Morton, M. L., 1967, The effects of alternating long and short photoperiods on gonadal growth and pituitary gonadotropins in the white-crowned sparrow, Zonotrichia leucophrys gambelii, Biol. Bull. 133: 333–342.CrossRefGoogle Scholar
  70. Gaston, S., and Menaker, M., 1967, Photoperiodic control of hamster testis, Science 158: 925–928.PubMedCrossRefGoogle Scholar
  71. Gibbs, F. P., 1983, Temperature dependence of the hamster circadian pacemaker, Am. J. Physiol. 244: R607 — R610.PubMedGoogle Scholar
  72. Guicking, A., 1970, Uber den Einfluss von Schall auf die tagesperiodische Aktivitat des Goldhamsters. I, J. Interdiscip. Cycle Res. 1: 323–334.Google Scholar
  73. Joseph, M. M., and Meier, A. H., 1974, Circadian component in the fattening and reproductive responses to prolactin in the hamster, Proc. Soc. Exp. Biol. Med. 146: 1150–1155.Google Scholar
  74. Krieger, O. T., 1980, Ventromedial hypothalamic lesions abolish food-shifted circadian adrenal and temperature rhythmicity, Endocrinology 106: 649–654.PubMedCrossRefGoogle Scholar
  75. Kripke, D. F., and Wyborney, V. G., 1980, Lithium slows rat circadian activity rhythms, Life Sci. 26: 1319–1320.PubMedCrossRefGoogle Scholar
  76. Krug, M., Brodemann, R., and Ott, T., 1981, Identical responses of the two hippocampal theta generators to physiological and pharmacological activation, Brain Res. Bull. 6: 5–11.Google Scholar
  77. Landau, I. T., 1975a, Light-dark rhythms in aggressive behavior of the male golden hamster, Physiol. Behar. 14: 767–774.Google Scholar
  78. Landau, I. T., 1975b, Effects of adrenalectomy on rhythmic and non-rhythmic aggressive behavior in the male golden hamster, Physiol. Behar. 14: 775–780.CrossRefGoogle Scholar
  79. Larsson, K., 1958, Age differences in the diurnal periodicity of male sexual behavior, Gerontologia 2: 64–72.PubMedCrossRefGoogle Scholar
  80. Lee, J. G., Hallonquist, J. D. and Mrosovsky, N., 1983, Differential effects of dark pulses on the two components of split circadian activity rhythms in golden hamsters, J. Comp. Physiol. 153: 123–132.CrossRefGoogle Scholar
  81. Lehmann, V., 1976, Short-term and circadian rhythms in the behaviour of the vole, Microtus agnestis (L.), Oecologia 23: 185–199.CrossRefGoogle Scholar
  82. Lisk, R. D., and Sawyer, C. H., 1966, Induction of paradoxical sleep by lights off stimulation, Proc. Soc. Exp. Biol. 123: 664–667.PubMedGoogle Scholar
  83. Maloney, E. S., 1978, Dutton’s Navigation and Piloting, 13th Edition, United States Naval Institute, Annapolis, Maryland, pp. 359–416.Google Scholar
  84. McEachron, D. L., Kripke, D. F., and Wyborney, V. G., 1981, Lithium promotes entrainment of rats to long circadian light-dark cycles, Psychiatr. Res. 2: 511–519.Google Scholar
  85. Menaker, M., 1982, The search for principles of physiological organization in vertebrate circadian systems, in: Vertebrate Circadian Systems ( J. Aschoff, S. Daan, and G. A. Groos, eds.), Springer-Verlag, New York, pp. 1–12.CrossRefGoogle Scholar
  86. Mistelberger, R., 1982, Entrainment to food and light schedules in VMH lesioned rats, Society for Neuroscience i2th Annual Meeting, Minneapolis, Abstr. 151. 13.Google Scholar
  87. Moline, M. L., Albers, H. E., Todd, R. B., and Moore-Ede, M. C., 1981, Light-dark entrainment of proestrous LH surges and circadian locomotor activity in female hamsters, Horm. Behay. 15: 451–458.CrossRefGoogle Scholar
  88. Moller, U., 1978, Interaction of external agents with the circadian mitotic rhythm in the epithelium of the hamster cheek pouch, J. Interdiscip. Cycle Res. 9: 105–114.CrossRefGoogle Scholar
  89. Moller, U., and Bojsen, J., 1974, The circadian temperature rhythm in Syrian hamsters as a function of the number of animals per cage, J. Interdiscip. Cycle Res. 5: 61–69.CrossRefGoogle Scholar
  90. Moller, V., Larsen, J. K., and Faber, M., 1974, The influence of injected tritiated thymidine on the mitotic circadian rhythm in the epithelium of the hamster cheek pouch, Cell Tissue Kinet. 7: 231–239.PubMedGoogle Scholar
  91. Moore, R. Y., 1973, Retinohypothalamic projections in mammals: A comparative study, Brain Res. Bull. 49: 403–409.Google Scholar
  92. Moore, R. Y., 1983, Organization and function of a CNS circadian oscillator: The suprachiasmic hypothalamic nucleus, Fed. Proc., 42: 2783–2789.PubMedGoogle Scholar
  93. Moore, R. Y., and Eichler, V. B., 1972, Loss of circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat, Brain Res. 42: 201–206.PubMedCrossRefGoogle Scholar
  94. Moore, R. Y., and Eichler, V. B., 1976, Central neural mechanisms in diurnal rhythm regulation and neuroendocrine responses to light, Psychoneuroendocrinology 1: 265–279.PubMedCrossRefGoogle Scholar
  95. Moore, R. Y., Gustafson, E. L., and Card, J. P., 1984, Identical immunoreactivity of afferents to the rat suprachiasmatic nucleus with antisera against avian pancreatic polypeptide, molluscan cardioexcitatory peptide and neuropeptide Y, Cell Tiss. Res. 236: 41–46.CrossRefGoogle Scholar
  96. Moore, R. Y., and Lenn, N. J., 1972, A retinohypothalamic projection in the rat, J. Comp. Neural. 146:1— 14.Google Scholar
  97. Moore-Ede, M. D., Schmelzer, W. S., Kass, D. A., and Herd, J. A., 1976, Internal organization of the circadian timing system in multicellular animals, Fed. Proc. 35: 2333–2338.PubMedGoogle Scholar
  98. Morgan, W. W., Pfeil, K. A., Reiter, R. J., and Gonzales, E., 1976, Comparison of changes in tryptophan and serotonin in regions of the hamster and the rat brain over a twenty-four hour period, Brain Res. 117: 77–84.PubMedCrossRefGoogle Scholar
  99. Morin, L. P., 1977, Progesterone: Inhibition of rodent sexual behavior, Physiol. Behay. 18: 701–715.CrossRefGoogle Scholar
  100. Morin, L. P., 1978, Rhythmicity of hamster gnawing: Ease of measurement and similarity to running activity, Physiol. Behay. 21: 317–320.CrossRefGoogle Scholar
  101. Morin, L. P., 1980, Effect of ovarian hormones on synchrony of hamster circadian rhythms, Physiol. Behay. 25: 741–749.CrossRefGoogle Scholar
  102. Morin, L. P., 198 la, An effect of photoperiod history on reproductive function and a circadian rhythm of male hamsters, Physiol. Behay. 27: 89–94.Google Scholar
  103. Morin, L. P., 198 lb, Ultradian rhythms in hamster and rat eating, Soc. Neurosei. 11th Ann. Ming.,Los Angeles, Abst. #19.9.Google Scholar
  104. Morin, L. P., 1982a, Phase and period of female hamster running rhythms during the annual reproductive cycle. Society for Neuroscience 12th Annual Meeting, Minneapolis, Abst. #151. 9.Google Scholar
  105. Morin, L. P., 19826, Acute or longterm melatonin fails to block estradiol benzoate plus progesterone facilitation of hamster receptivity, Conference Rehsod. Behar.. E. Lansing (Abstract).Google Scholar
  106. Morin, L. P., and Cummings, L. A., 1981, Effect of surgical or photoperiodic castration, testosterone replacement or pinealectomy on male hamster running rhythmicity. Physiol. Behar. 26: 825–838.CrossRefGoogle Scholar
  107. Morin, L. P., and Cummings, L. A., 1982, Splitting of wheelrunning rhythms by castrated or steroid treated male and female hamsters, Physiol. Behay. 29: 665–675.CrossRefGoogle Scholar
  108. Morin, L. P., and Zucker, I., 1978, Photoperiodic regulation of copulatory behavior in the male hamster, J. Endocrinol. 77: 249–258.PubMedCrossRefGoogle Scholar
  109. Morin, L. P., Fitzgerald, K. M., Rusak, B., and Zucker, I., 1977a, Circadian organization and neural mediation of hamster reproductive rhythms, Psychoneuroendocrinology 2: 73–98.PubMedCrossRefGoogle Scholar
  110. Morin, L. P., Fitzgerald, K. M., and Zucker, I., 19776, Estradiol shortens the period of hamster circadian rhythms, Science 196: 305–307.Google Scholar
  111. Mrsovsky, N., 1975, The amplitude and period of circannual cycles of body weight in golden-mantled ground squirrels with medial hypothalamic lesions, Brain Res. 99: 97–116.CrossRefGoogle Scholar
  112. Mrsovsky, N., 1978, Circannual cycles in hibernators, in: Strategies in Cold: Natural Torpidity and Thermogenesis ( L. C. H. Wang and J. W. Hudson, eds.), New York, Academic Press, pp. 21–66.Google Scholar
  113. Nishio, T., Shiosaka, S., Nakagawa, H., Sakumoto, T., and Satoh, K., 1979, Circadian feeding rhythm after hypothalamic knife-cut isolating suprachiasamatic nucleus, Physiol. Behay. 23: 763–769.Google Scholar
  114. Nunez, A. A., and Stephan, F. K., 1977, The effects of hypothalamic knife cuts on drinking rhythms and the estrus cycle of the rat, Behay. Biol. 20: 224–234.Google Scholar
  115. Pengelley, E. T., Asmundson, S. J., Barnes, B., and Aloia, R. C., 1976, Relationship of light intensity and photoperiod to circannual rhythmicity in the hibernating ground squirrel, Citellus lateralis, Comp. Biochem. Physiol. 53A: 273–277.CrossRefGoogle Scholar
  116. Philo, R., Rudeen, P. K., and Reiter, R. J., 1977, A comparison of the circadian rhythms and concentrations of serotonin and norepinephrine in the telencephalon of four rodent species, Comp. Biochem. Physiol, 57C: 127–130.CrossRefGoogle Scholar
  117. Pickard, G. E., 1980, Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: A horseradish perioxidase study, Brain Res. 183: 458–465.PubMedCrossRefGoogle Scholar
  118. Pickard, G. E., 1982, The afferent connections of the suprachiasmatic nucleus of the golden hamster with emphasis on the retinohypothalamic projection, J. Comp. Neural. 211: 65–83.CrossRefGoogle Scholar
  119. Pickard, G. E., and Silverman, J.-A., 1981, Direct retinal projections to the hypothalamus piriform cortex, and accessory optic nuclei in the golden hamster as demonstrated by a sensitive anterograde horseradish perocidase technique, J. Comp. Neural. 196: 155–172.CrossRefGoogle Scholar
  120. Pickard, G. E., and Turek, F. W., 1982, Splitting of the circadian rhythm of activity is abolished by unilateral lesions of the suprachiasmatic nuclei, Science 215: 1119–1121.PubMedCrossRefGoogle Scholar
  121. Pickard, G. E., and Turek, F. W., 1983, The suprachiasmatic nuclei: Two circadian clocks? Brain Res. 268: 201–210.PubMedCrossRefGoogle Scholar
  122. Pittendrigh, C. S., 1960, Circadian rhythms and circadian organization of living systems, Cold Spring Harbor Symp. Quant. Biol. 25: 159–182.Google Scholar
  123. Pittendrigh, C. S., 1967, Circadian rhythms, space research and manned space flight, in: Life Sciences and Space Research V, pp. 122–134, Amsterdam, North Holland.Google Scholar
  124. Pittendrigh, C. S., 1974, Circadian oscillations in cells and the circadian organization of multicellular systems, in: The Neurosciences, Third Study Program ( F. O. Schmitt and F. G. Worden, eds.), MIT Press, Cambridge, pp. 437–358.Google Scholar
  125. Pittendrigh, C. S., and Daan, S., 1974, Circadian oscillations in rodents: A systematic increase of their frequency with age, Science 186: 548–550.PubMedCrossRefGoogle Scholar
  126. Pittendrigh, C. S., and Daan, S., 1976a, A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of spontaneous frequency, J. Comp. Physiol. 106: 223–252.CrossRefGoogle Scholar
  127. Pittendrigh, C. S., and Daan, S., 19766, A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: Pacemaker as clock, J. Comp. Physiol. 106: 291–331.Google Scholar
  128. Pittendrigh, C. S., and Daan, S., 1976e, A functional analysis of circadian pacemakers in nocturnal rodents. V. Pacemaker structure: A clock for all seasons, J. Comp. Physiol. 106: 333–355.Google Scholar
  129. Pohl, H., 1976, Proportional effects of light on entrained circadian rhythms of birds and mammals, J. Comp. Physiol. 112: 103–108.Google Scholar
  130. Rawson, K. S., 1960, Effects of tissue temperature on mammalian activity rhythms, Cold Spring Harbor Symp. Quant. Biol. 24: 105–113.Google Scholar
  131. Reiter, R. J., 1974, Circannual reproductive rhythms in mammals related to photoperiod and pineal function: A review, Chronobiologica 1: 365–395.Google Scholar
  132. Richards, M. P. M., 1966, Activity measured by running wheels and observations during the oestrous cycle, pregnancy and pseudopregnancy in the golden hamster, Anim. Behay. 14: 450–458.CrossRefGoogle Scholar
  133. Richter, C. P., 1965, Biological Clocks in Medicine and Psychiatry, Thomas, Springfield, Illinois, p. 10. Richter, C. P., 1970, Dependence of successful mating in rats on functioning of 24-hour clocks of the male and female, Commun. Behay. Biol. A5: 1–5.Google Scholar
  134. Richter, C. P., 1975, Deep hypothermia and its effect on the 24-hour clock of rats and hamsters, Johns Hopkins Med. J. 136: 1–10.PubMedGoogle Scholar
  135. Richter, C. P., 1977, Heavy water as a tool for study of the forces that control length of period of the 24-hour clock of the hamster, Proc. Natl. Acad. Sci. 74: 1295–1299.PubMedCrossRefGoogle Scholar
  136. Riley, J. N., Card, J. P., and Moore, R. Y., 1981, A retinal projection to the lateral hypothalamus in the rat, Cell Tissue Res. 214: 257–269.PubMedCrossRefGoogle Scholar
  137. Rowland, N., 1976, Endogenous circadian rhythms in rats recovered from lateral hypothalamic lesions, Physiol. Behay. 16: 257–266.CrossRefGoogle Scholar
  138. Rusak, B., 1977a, The role of the suprachiasmatic nuclei in the generation of circadian rhythms in the golden hamster, Mesocrrcetus auratus, J. Comp. Physiol. 118: 145–164.CrossRefGoogle Scholar
  139. Rusak, B., 19776, Involvement of the primary optic tracts in mediation of light effects on hamster circadian rhythms, J. Comp. Physiol. 118: 165–172.Google Scholar
  140. Rusak, B., and Boulos, Z., 1981, Pathways for photic entrainment of mammalian circadian rhythms, Photochem. Photobiol. 34: 267–273.PubMedGoogle Scholar
  141. Rusak, B., and Groos, G., 1982, Suprachiasmatic stimulation phase shifts rodent circadian rhythms, Science 215: 1407–1409.PubMedCrossRefGoogle Scholar
  142. Rusak, B., and Morin, L. P., 1976, Testicular responses to photoperiod are blocked by lesions of the suprachiasmatic nuclei in golden hamsters, Biol. Reprod. 15: 366–374.PubMedCrossRefGoogle Scholar
  143. Satinoff, E., Liran, J., and Clapman, R., 1982, Aberrations of circadian body temperature rhythms in rats with medial preoptic lesions, Am. J. Physiol. 242: R35 — R357.Google Scholar
  144. Shibuya, C. A., Melnyk, R. B., and Mrosovsky, N., 1980, Simultaneous splitting of drinking and loco-motor activity rhythms in golden hamsters, Naturwissenschaften 67: 45–56.PubMedCrossRefGoogle Scholar
  145. Silverman, H. J., and Zucker, I., 1976, Absence of post-fast food compensation in golden hamster (Mesocricetus auratus), Physiol. Behay. 17: 271–285.CrossRefGoogle Scholar
  146. Sisk, C. L., and Stephan, F. K., 1981, Phase shifts of circadian rhythms of activity and drinking in the hamster, Behay. Neural Biol. 33: 334–344.CrossRefGoogle Scholar
  147. Sisk, C. L., and Turek, F. W., 1982, Role of the inter-connection of the suprachiasmatic nuclei in the hamster circadian system, Society for Neuroscience 12th Annual Meeting, Minneapolis, Abstr. 14. 9.Google Scholar
  148. Stephan, F. K., and Nunez, A. A., 1979, Elimination of circadian rhythms in drinking, sleep and temperature by isolation of the suprachiasmatic nuclei, Behay. Biol. 20: 1–16.CrossRefGoogle Scholar
  149. Stephan, F. K., and Zucker, I., 1972, Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions, Proc. Natl. Acad. Sci. U.S.A. 69: 1583–1586.PubMedCrossRefGoogle Scholar
  150. Stephan, F. K., Berkley, K. J., and Moss, R. L., 1981, Efferent connections of the rat suprachiasmatic nucleus, Neuroscience 6: 2625–2641.PubMedCrossRefGoogle Scholar
  151. Stephan, F. K., Donaldson, J. A., and Gellert, J., 1982, Retinohypothalamic trait symmetry and phase shifts of circadian rhythms in rats and hamsters, Physiol. Behay. 29: 1153–1159.CrossRefGoogle Scholar
  152. Stetson, M. H., and Anderson, P. J., 1980, Circadian pacemaker times gonadotropin release in free-running female hamsters, Am. J. Physiol. 238: R23 — R27.PubMedGoogle Scholar
  153. Stetson, M. H., and Gibson, J. T., 1977, The estrous cycle in golden hamsters: A circadian pacemaker times preovulatory gonadotropin release, J. Exp. Zoo/. 201: 289–294.CrossRefGoogle Scholar
  154. Stetson, M. H., and Watson-Whitmyre, M., 1976, Nucleus suprachiasmaticus: The biological clock in the hamster? Science 191: 197–199.PubMedCrossRefGoogle Scholar
  155. Stetson, M. H., Elliott, J. A., and Menaker, M., 1975, Photoperiodic regulation of hamster testis: Circadian sensitivity to the effects of light, Biol. Reprod. 13: 329–339.PubMedCrossRefGoogle Scholar
  156. Stetson, M. H., Matt, K. S., and Watson-Whitmyre, M., 1976, Photoperiodism and reproduction in golden hamsters: Circadian organization and termination of photorefractoriness, Biol. Reprod. 14: 531–537.PubMedCrossRefGoogle Scholar
  157. Stetson, M. H., Watson-Whitmyre, M., and Matt, K. S., 1977, Circadian organization in the regulation of reproduction: Timing of the 4-day estrous cycle of the hamster, J. Interdiscip. Cycle Res. 8: 350–352.CrossRefGoogle Scholar
  158. Swade, R. H., 1969, Circadian rhythms in fluctuating light cycles: Toward a new model of entrainment, J. Theor. Biol. 24: 227–239.PubMedCrossRefGoogle Scholar
  159. Swade, R. H., and Pittendrigh, C. S., 1967, Circadian locomotor rhythms of rodents in the arctic, Am. Nat. 101: 431–466.Google Scholar
  160. Swann, J., and Turek, F. W., 1982, Cycle of lordosis behavior in female hamsters whose circadian activity rhythm has split into two components, Am. J. Physiol. 243:R112—RI18.Google Scholar
  161. Takahashi, J. S., and Menaker, M., 1980, Interaction of estradiol and progesterone: Effects on circadian locomotor rhythm of female golden hamsters, Am. J. Physiol. 239: R497 — R504.PubMedGoogle Scholar
  162. Takahashi, J. S., and Zatz, M., 1982, Regulation of circadian rhythmicity, Science 217: 1104–1111.PubMedCrossRefGoogle Scholar
  163. Takahashi, J. S., DeCoursey, P. J., Bauman, L., and Menaker, M., 1984, Spectral sensitivity of a novelphotoreceptive system mediating entrainment of mammalian circadian rhythms, Nature 308: 186–188.PubMedCrossRefGoogle Scholar
  164. Toates, F. M., 1978, A circadian rhythm of hoarding in the hamster, Anim. Behay. 26: 631.CrossRefGoogle Scholar
  165. Tobler, I., and Borbely, A. A., 1977, Enhancement of paradoxical sleep by short light periods in the golden hamster, Neurosci. Lett. 6: 275–277.Google Scholar
  166. Turek, F. W., and Campbell, C. S., 1979, Photoperiodic regulation of neuroendocrine-gonadal activity, Biol. Reprod. 20: 32–50.Google Scholar
  167. Van Den Pol, A. N., and Powley, T., 1979, A fine-grained anatomical analysis of the role of the rat suprachiasmatic nucleus in circadian rhythms of feeding and drinking, Brain Res. 160: 307–326.PubMedCrossRefGoogle Scholar
  168. Warden, A. W., 1978, Circadian rhythms of self-selected lighting in golden hamsters: Relation to gonadal condition, Chronobiologia 5:28–38.Google Scholar
  169. Warden, A. W., and Sachs, B. D., 1974, Circadian rhythms of self-selected lighting in hamsters, J. Comp. Physiol. 91: 127–134.Google Scholar
  170. Widmaier, E. P., and Campbell, C. S., 1980, Interactions of estradiol and photoperiod on activity patterns in the female hamster, Physiol. Behay. 24: 923–930.CrossRefGoogle Scholar
  171. Winfree, A. T., 1967, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol. 16: 15–42.Google Scholar
  172. Winfree, A. T., 1971, Comment, in: Biochronometry ( M. Menaker, ed.) National Academy of Science, Washington, D.C., pp. 150–151.Google Scholar
  173. Wirz-Justice, A., and Campbell, I. C., 1982, Antidepressant drugs can slow or dissociate circadian rhythms, Experientia 38: 1301–1309.PubMedCrossRefGoogle Scholar
  174. Zatz, M., 1979, Photoentrainment, pharmacology, and phase shifts of the circadian rhythm in the rat pineal, Fed. Proc. 38: 2596–2601.Google Scholar
  175. Zatz, M., and Brownstein, M. J., 1979, Intraventricular carbachol mimics the effects of light on the cricadian rhythm in the rat pineal gland, Science 203: 358–360.PubMedCrossRefGoogle Scholar
  176. Zatz, M., and Herkenham, M. A., 1981, Intraventricular carbachol mimics the phase-shifting effect of light on the circadian rhythm of wheel-running activity, Brain Res. 212: 234–238.PubMedCrossRefGoogle Scholar
  177. Zucker, I., and Stephan, F. K., 1973, Light-dark rhythms in hamster eating, drinking and locomotor behaviors, Physiol. Behay. 11: 239–250.CrossRefGoogle Scholar
  178. Zucker, I., Rusak, B., and King, R. G., 1976, Neural bases for circadian rhythms in rodent behavior, in: Advances in Psychobiology Volume 3 ( A. H. Riesen and R. F. Thompson, eds.), John Wiley and Sons, New York, pp. 35–74.Google Scholar
  179. Zucker, 1., Fitzgerald, K. M., and Morin, L. P., 1980a, Sex differentiation of the circadian system in the golden hamster, Am. J. Physiol. 238: R97 — R101.PubMedGoogle Scholar
  180. Zucker, I., Cramer, C. P., and Bittman, E. L., 19806, Regulation by the pituitary gland of circadian rhythms in the hamster, J. Endocrinol. 85: 17–25.Google Scholar

Copyright information

© Plenum Press, New York 1985

Authors and Affiliations

  • Lawrence P. Morin
    • 1
  1. 1.Department of PsychiatryState University of New YorkStony BrookUSA

Personalised recommendations