Advertisement

Torsional Frequencies and Barriers to Internal Rotation from Far Infrared Spectra of Solids

  • J. R. Durig
  • J. Bragin
  • S. M. Craven
  • C. M. PlayerJr.
  • Y. S. Li
Part of the Developments in Applied Spectroscopy book series (DAIS, volume 9)

Abstract

The far infrared and Raman spectra of several molecular solids which contained one, two, three, and four methyl rotors have been obtained over a range of temperatures. For the molecules with one methyl rotor it was found that the torsional frequency shifted approximately 20% with solidification; the calculated barriers are also raised by a similar amount. For molecular solids which contained three rotors it was found for almost every case that the A2 torsional mode which may be inactive for the molecule in the gas phase was always observed in the spectra of the solids. From a comparison of the frequencies for the degenerate E torsional mode and the A2 torsion one obtains a measure of the top-top interaction term for the potential energy. The barriers obtained for most of the molecular solids which contained three methyl rotors were very similar to those reported in the gas phase work in which the top-top interaction has been neglected. For the tetrahedral molecules containing four methyl rotors both the triply degenerate F1 torsional mode and the A2 torsion were observed in the spectra of the solids and from these data torsional barriers were calculated. A comparison of the torsional barriers for a large number of one, two, three, and four top-molecules will be given and discussed.

Keywords

Barrier Height Torsional Vibration Shift Factor Torsional Mode Tertiary Butyl 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Weiss and G. E. Leroi, J. Chem. Phys. 48, 962 (1968).CrossRefGoogle Scholar
  2. 2.
    H. Bountin and S. Yip, “Molecular Spectroscopy with Neutrons”, MIT Press (1968).Google Scholar
  3. 3.
    J. R. Durig, S. M. Craven and J. Bragin, J. Chem. Phys. 51, 5663 (1969).CrossRefGoogle Scholar
  4. 4.
    J. R. Durig, S. M. Craven and J. Bragin, J. Chem. Phys. 52, 2046 (1970).CrossRefGoogle Scholar
  5. 5.
    J. R. Durig, C. M. Player Jr. and J. Bragin, J. Chem. Phys. 52, 4224 (1970).CrossRefGoogle Scholar
  6. 6.
    J. R. Durig, S. M. Craven and J. Bragin, J. Chem. Phys. 53, 38 (1970).CrossRefGoogle Scholar
  7. 7.
    J. R. Durig, S. M. Craven, K. K. Lau and J. Bragin, J. Chem. Phys. 53, Dec. 15th Issue (1970).Google Scholar
  8. 8.
    J. R. Durig, C. M. Player, Jr. and J. Bragin, J. Chem. Phys. 53,Google Scholar
  9. 9.
    J. R. Durig, C. M. P1ayer, Jr., J. Bragin and Y. S. Li, J. Chem. Phys. 54,Google Scholar
  10. 10.
    D. R. Herschbach, J. Chem. Phys. 31, 91 (1959).CrossRefGoogle Scholar
  11. 11.
    K. S. Pitzer, “Quantum Chemistry,” Prentice-Hall, Inc. Englewood Cliffs, N.J., (1953).Google Scholar
  12. 12.
    W. G. Fateley and F. A. Miller, Spectrochim. Acta, 17, 857 (1961).CrossRefGoogle Scholar
  13. 13.
    W. G. Fateley, F. A. Miller and R. E. Witkowski, Air Force Technical Report AFML-TR-66–408 (1967).Google Scholar
  14. 14.
    G. Sage and W. Klemperer, J. Chem. Phys. 39,371 (1963).CrossRefGoogle Scholar
  15. 15.
    D. R. Herschbach, J. Chem. Phys. 25, 358 (1956).CrossRefGoogle Scholar
  16. 16.
    H. Russell Jr., D. R. V. Golding and D. M. Yost, J. Am. Chem. Soc., 66, 16 (1944).CrossRefGoogle Scholar
  17. 17.
    H. T. Minden and B. P. Dailey, Phys. Rev., 82, 338 (1951).Google Scholar
  18. 18.
    C. A. Wulff, J. Chem. Phys. 39, 1227 (1963).CrossRefGoogle Scholar
  19. 19.
    B. Lafon and J. R. Nielsen, J. Mol. Spectry., 21, 175 (1966) and references therein.CrossRefGoogle Scholar
  20. 20.
    J. C. Evans and H. J. Bernstein, Can. J. Chem., 33, 1746 (1955).CrossRefGoogle Scholar
  21. 21.
    K. S. Pitzer and J. L. Hollenberg, J. Am. Chem. Soc., 75, 2219 (1953).CrossRefGoogle Scholar
  22. 22.
    T. R. Rubin, B. H. Levedahl and D. M. Yost, J. Am. Chem. Soc., 66, 279 (1944).CrossRefGoogle Scholar
  23. 23.
    J. R. Rush, J. Chem. Phys. 46, 2285 (1967).CrossRefGoogle Scholar
  24. 24.
    E. O. Stegjskal, D. E. Woessner, T. C. Farrar and H. S. Gutowsky, J. Chem. Phys., 31, 55 (1959).CrossRefGoogle Scholar
  25. 25.
    W. G. Fateley and F. A. Miller, Spectrochim. Acta, 19, 611 (1963).CrossRefGoogle Scholar
  26. 26.
    R. A. Scott and H. A. Scheraga, J. Chem. Phys., 42, 2209 (1965).CrossRefGoogle Scholar
  27. 27.
    J. L. DeCoen, G. Elefante, A. M. Liquori and A. Damiani, Nature, 216, 910 (1967).CrossRefGoogle Scholar
  28. 28.
    R. Holm, M. Mitzlaff and H. Hartmann, Z. Naturforsch, 23A, 307 (1968).Google Scholar
  29. 29.
    W. G. Fateley, F. E. Kiviat and F. A. Miller, Spectrochim Acta, 26A, 315 (1970).Google Scholar
  30. 30.
    K. D. Möller and L. H. London, J. Chem. Phys. 47, 2505 (1967).CrossRefGoogle Scholar
  31. 31.
    F. Winther and D.O. Hummel, Spectrochim Acta, 25A, 417 (1969).Google Scholar
  32. 32.
    F. A. Miller and F.E. Kiviat, Spectrochim Acta, 25A, 1577 (1969).Google Scholar
  33. 33.
    R. H. Schwendeman and G. D. Jacobs, J. Chem. Phys. 36, 1245 (1962).CrossRefGoogle Scholar
  34. 34.
    N. T. McDevitt, A. L. Rozek, F. F. Bentley and A. D. Davidson, J. Chem. Phys. 42, 1173 (1965).CrossRefGoogle Scholar
  35. 35.
    W. A. Thompson, Phys. Rev. Letters, 20, 1085 (1968).CrossRefGoogle Scholar
  36. 36.
    K. A. Strong, R. M. Brugger and R. J. Pugmire, J. Chem. Phys., 52, 2277 (1970).CrossRefGoogle Scholar
  37. 37.
    R. R. Getty and G. E. Leroi, Symposium an Molecular Structure and Spectroscopy, The Ohio State University, Columbus, Ohio, (1969), paper Q-7.Google Scholar
  38. 38a.
    K. D. Möller and H. G. Andresen, J. Chem. Phys., 37, 1800 (1962).CrossRefGoogle Scholar
  39. 38b.
    L. Pierce, J. Chem. Phys., 33, 498 (1961).CrossRefGoogle Scholar
  40. 39.
    K. D. Möller, A. R. DeMeo, D. R. Smith and L. H. London, J. Chem. Phys. 47, 2609 (1967).CrossRefGoogle Scholar
  41. 40.
    J. R. Hoyland, J. Chem. Phys. 19, 1908 (1968).CrossRefGoogle Scholar
  42. 41.
    M. D. Grant, R. J. Pugmire, R. C. Livingston, K. A. Strong, H. L. McMurry and Brugger, J. Chem. Phys. 52, 4424 (1970).Google Scholar
  43. 42.
    G. B. Kistiakowsky and W. W. Rice, J. Chem. Phys. 8, 618 (1940).CrossRefGoogle Scholar
  44. 43.
    R. M. Kennedy, M. Sagenkahn and J. G. Aston, J. Am. Chem. Soc., 63, 2267 (1941).CrossRefGoogle Scholar
  45. 44.
    K. S. Pitzer, J. Chem. Phys., 10, 605 (1942).CrossRefGoogle Scholar
  46. 45.
    R. Ananthakrishnan, Proc. Ind. Acad. Sci. A5, 285 (1937).Google Scholar
  47. 46.
    F. A. French and R. S. Rasmussen, J. Chem. Phys. 14, 389 (1946).CrossRefGoogle Scholar
  48. 47.
    P. H. Kasai and R. J. Myers, J. Chem. Phys., 30, 1096 (1959)CrossRefGoogle Scholar
  49. 47a.
    P. H. Kasai and R. J. Myers, J. Chem. Phys. 38, 2753 (1963).CrossRefGoogle Scholar
  50. 48.
    A. Hadni, Compt. Rend. 238, 349 (1954).Google Scholar
  51. 49.
    R. C. Lord, WADC Technical Report 59–498 (1960).Google Scholar
  52. 50.
    W. G. Fateley and F. A. Miller, Spectrochim Acta, 18, 977 (1962).Google Scholar
  53. 51.
    D. R. Lide Jr. and D. E. Mann, J. Chem. Phys. 28, 572 (1958).CrossRefGoogle Scholar
  54. 52.
    D. R. Lide Jr. and D. E. Mann, J. Chem. Phys. 29, 914 (1958).CrossRefGoogle Scholar
  55. 53.
    R. G. Snyder and G. Zebi, Spectrochim. Acta 23A, 391 (1967).Google Scholar
  56. 54.
    P. Labarbe, M. T. Forel and G. Bessis, Spectrochim. Acta, 24A, 2165 (1968).Google Scholar
  57. 55.
    J. P. Perchard, M. T. Forel and M. L. Josien, J. Chem. Phys. 61, 632 (1964).Google Scholar
  58. 56.
    J. M. Freeman and T. Henshall, J. Mol. Structure 1, 31 (1967).CrossRefGoogle Scholar
  59. 57.
    J. P. Lowe, Progress in Physical Organic Chemistry (Interscience Publishers, Inc., New York, 1968), Vol. 6.Google Scholar
  60. 58.
    D. A. Dows, Physics and Chemistry of the Organic Solid State (Interscience Publishers, Inc., New York, 1963) Vol. 1.Google Scholar
  61. 59.
    K. D. Möller and H. G. Andresen, J. Chem. Phys., 39, 17 (1963).CrossRefGoogle Scholar
  62. 60.
    J. C. Evans and G. Y. S. Lo, J. Am. Chem. Soc. 88, 2118 (1966).CrossRefGoogle Scholar
  63. 61.
    E. R. Shull, T. S. Oakwood and D. H. Rank, J. Chem. Phys. 21, 2024 (1953).CrossRefGoogle Scholar
  64. 62.
    J. G. Aston and G. H. Messerly, J. Am. Chem. Soc., 58, 2345 (1936).CrossRefGoogle Scholar
  65. 63.
    C. W. Hawley, M. S. Thesis, University of South Carolina (1971).Google Scholar
  66. 64.
    G. Graner and C. Thomas, J. Chem. Phys. 49, 4160 (1968).CrossRefGoogle Scholar
  67. 65.
    K. M. Sinnott, J. Chem. Phys. 34, 851 (1961).CrossRefGoogle Scholar
  68. 66.
    L. C. Krisher, J. Chem. Phys. 33, 1237 (1960).CrossRefGoogle Scholar
  69. 67.
    T. Kasuya, J. Phys. Soc. Japan, 15, 1273 (1960).CrossRefGoogle Scholar
  70. 68.
    D. R. Herschbach and J. D. Swalen, J. Chem. Phys., 29, 761 (1958).CrossRefGoogle Scholar
  71. 69.
    S. S. Butcher, J. Chem. Phys., 38, 2310 (1963).CrossRefGoogle Scholar
  72. 70.
    N. Dreizler and H. D. Rudolph, Z. Naturforsch. 17a, 712 (1962).Google Scholar

Copyright information

© Chicago Section of the Society for Applied Spectroscopy 1971

Authors and Affiliations

  • J. R. Durig
    • 1
  • J. Bragin
    • 1
  • S. M. Craven
    • 1
  • C. M. PlayerJr.
    • 1
  • Y. S. Li
    • 1
  1. 1.Department of ChemistryUniversity of South CarolinaColumbiaUSA

Personalised recommendations