AB-Initio Calculated Optical Properties of [001] (GaAs)n-(AlAs)n Superlattices
Chapter
Abstract
Recently, the gap between experimentally and theoretically accessible [001] (GaAs)n-(AlAs)n superlattices has been bridged. Following the pioneering work of Ishibashy et al., 1 several 2–5 (GaAs)n-(AlAs)n superlattices of high quality have been grown and characterized down to n = 1. Initiated by the LMTO calculation of Christensen et al. 6 for the (GaAs)1-(A1As)1 superlattice, ab-initio bandstructure methods have been applied to these superlattices up to n = 4. 7–11
Keywords
Conduction Band Oscillator Strength Band State Indirect Transition Radiative Rate
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.A. Ishibashi, Y. Mori, M. Itabashi and N. Watanabe, J. Appl. Phys. 58, 2691 (1985)ADSCrossRefGoogle Scholar
- 2.T. Isu, De-Sheng Jiang and K. Ploog, Appl. Phys A43, 75 (1987)CrossRefGoogle Scholar
- 3.K.J. Moore, G. Duggan, P. Dawson and C.T.B. Foxon, to be published.Google Scholar
- 4.E. Finkman, M.D. Sturge and M.C. Tamargo, Appl. Phys. Lett. 49, 1299 (1986);ADSCrossRefGoogle Scholar
- 5.N. Kobayashi and Y. Horikoshi, Appl. Phys. Lett. 50, 909 (1987)ADSCrossRefGoogle Scholar
- 6.N.E. Christensen, E. Molinari and G.B Bachelet, Solid State Comm. 56, 125 (1985)ADSCrossRefGoogle Scholar
- 7.T. Nakayama and H. Kamimura, J. Phys. Soc. Japan 54, 4726 (1985)ADSCrossRefGoogle Scholar
- 8.D.M. Bylander and L. Kleinman, Phys. Rev. B 34, 5280 (1986)ADSCrossRefGoogle Scholar
- 9.T.G. Gilbert and S.J. Gurman, Superl. and Microstr. 3, 17 (1987)ADSCrossRefGoogle Scholar
- 10.J.S. Nelson, C.Y. Fong and I.P. Batra, Appl. Phys. Lett. 50, 1595 (1987)ADSCrossRefGoogle Scholar
- 11.S. Ciraci and I.P. Batra, Phys. Rev. B36, 1225 (1987); I.P. Batra, S. Ciraci and J.S. Nelson, J. Vac. Sci. Technol. B4, 1300 (1987)Google Scholar
- 12.D.M. Bylander and L. Kleinman, Phys. Rev. B 36, 3229 (1987); D.M. Bylander and L. Kleinman, Phys. Rev. Lett. 59, 2091 (1987)Google Scholar
- 13.D.M. Wood, S.H. Wei and A. Zunger, Phys. Rev. Lett. 58, 1123 (1987)ADSCrossRefGoogle Scholar
- 14.A.R. Williams, J. Kubler, C.D. Gelatt, Phys.Rev. B19, 6094 (1979)ADSCrossRefGoogle Scholar
- 15.see e.g. G. Bastard and J.A. Brum, IEEE Journ. of Quant. Elec. QE-22, 1625 (1986) and references therein.Google Scholar
- 16.P. Hohenberg and W. Kohn, Phys. Rev. 136B, 864 (1964); W. Kohn and L.J. Sham, Phys. Rev. 140A, 1133 (1965)Google Scholar
- 17.T. Jarlborg and A.J. Freeman, Phys. Lett. 74A, 349 (1979)CrossRefGoogle Scholar
- 18.H.W.A.M. Rompa, R. Eppenga and M.F.H. Schuurmans, Physica 145B, 5 (1987)Google Scholar
- 19.G.W. Godby, M. Schluter and L.J. Sham, Phys. Rev. B35, 4170 (1987); These authors have shown that the experimental conduction bands of GaAs and AlAs can, to within 100 meV, be obtained from their ab-initio density functional calculations using a rigid shift of 0.8 eV for GaAs and 0.9 eV for AlAs. Using a similar approach we find the calculated relative energy positions in the conduction bands of GaAs and AlAs to be accurate on the level of 30 meV.Google Scholar
- 20.Our calculated results for the ground state properties of these superlattices are in accordance with the results from other ab-initio calculations. We define the GaAs/AlAs interface heat of formation as AH0 = E((GaAs)n (A1As)0)/n — (E(GaAs) + E(A1As))/2; we have calculated the total energies E(GaAs) and E(AlAs) under the same conditions as the SL calculation, i.e. using the same unit cell, the same number of k-points in the BZ, etc. We find meV (cf. Bylander and Kleinman (15 meV) using relativistic pseudopotentials 12 and Wood et al. (25 meV) using both semirelativistic pseudo-potentials and the LAPW method). 13 We find AH2a19 meV. By shifting the bulk GaAs and AlAs potential rigidly to fit the potential of the corresponding monolayers of the GaAs/AlAs SL optimally, we find a value of 0.6 meV for the valence band offset F(HH)G’m — T(HH)A’As in [001] GaAs-AlAs superlattices (cf. 446 meV in Ref. 12).Google Scholar
- 21.Note that we need not consider the virtual process involving the valence band states since the corresponding energy denominator is much larger.Google Scholar
- 22.A.S. Barker, J.L. Merz and A.C. Gossard, Phys. Rev. B17, 3181 (1978); C. Colvard, R. Merlin, M.V. Klein and A.C. Gossard, Phys. Rev. Lett. 45, 298 (1980); C. Colvard, R. Merlin, M.V. Klein and A.C. Gossard, J. de Physique C6, 631 (1981)Google Scholar
- 23.O.J. Glembocky and F.H. Pollak, Phys. Rev. Lett. 48, 413 (1982); O.J. Glembocky and F.H. Pollak, Phys. Rev. B25, 1193 (1982);Google Scholar
- 24.J. Ihm, Appl. Phys. Lett. 50, 1068 (1987)ADSCrossRefGoogle Scholar
Copyright information
© Plenum Press, New York 1989