Guanidines pp 373-379 | Cite as

Guanidinoacetic Acid (GAA) Deficiency and Supplementation in Rats with Chronic Renal Failure (CRF)

  • Y. Tsubakihara
  • N. Iida
  • S. Yuasa
  • T. Kawashima
  • I. Nakanishi
  • M. Tomobuchi
  • T. Yokogawa
  • A. Ando
  • Y. Orita
  • H. Abe
  • T. Kikuchi
  • H. Okamoto

Abstract

Guanidinoacetic acid (GAA) is the precursor of creatine which is essential in the energy metabolism of muscle and nerve tissue1. GAA is demonstrated to be produced mainly by the kidney2. Therefore, a decrease in GAA-producing tissue due to diseased kidney, could lead to a deficiency in creatine, the major matabolite of GAA.

Keywords

Chronic Renal FAlLURE Total Creatine Guanidinoacetic Acid Total Creatine Content Experimental Chronic Renal FAlLURE 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. J. R. Hird, S. P. Davuluri and R. M. McLean, Evolutionary relationships between arginine and creatine in muscle, in: “Urea Cycle Diseases,” A. Lowenthal, A. Mori and B. Marescau, eds., Plenum Press, New York, 401 (1982).Google Scholar
  2. 2.
    R. Goldman and J. X. Moss, Synthesis of creatine in nephrectomized rats, Am. J. Physiol., 197: 865 (1959).PubMedGoogle Scholar
  3. 3.
    R. Platt, M. H. Roscoe and F. W. Smith, Experimental renal failure, Clin. Sci., 11: 217 (1952).PubMedGoogle Scholar
  4. 4.
    T. Tamura, S. Tsutsumi and K. Kizu, Study of the glucuronic acid matabolism, Jap. J. Pharm., 59: 78 (1963).Google Scholar
  5. 5.
    R. W. Bonsnes and H. H. Taussky, On the colorimetric determination of creatinine by the Jaffe reaction, J. Biol. Chem., 158: 581 (1945).Google Scholar
  6. 6.
    H. Borsook and J. W. Dubnoff, The formation of glycocyamine in animal tissues, J. Biol. Chem., 138: 389 (1941).Google Scholar
  7. 7.
    J. B. Walker, Role of pancreas in biosynthesis of creatine, Proc. Soc. Exp. Biol. and Med., 98: 7 (1958).Google Scholar
  8. 8.
    J. B. Walker and M. S. Walker, Formation of creatine from guanidinoacetate in pancreas, Proc. Soc. Exp. Biol. and Med., 101: 807 (1959).Google Scholar
  9. 9.
    J. F. Van Pilsum, B. Olsen, D. Taylor, T. Rozycki, and J. C. Pierce, Transamidinase activities, in vitro, of tissues from various mammals and from rats fed protein-free, creatine-supplemented and normal diets, Arch. Biochem. Biophys., 100: 520 (1963).CrossRefGoogle Scholar
  10. 10.
    J. F. Van Pilsum, G. C. Stephens, and D. Taylor, Distribution of creatine, guanidinoacetate and the enzymes for their biosynthesis in the animal kingdom, Biochem. J., 126: 325 (1972).Google Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Y. Tsubakihara
    • 1
  • N. Iida
    • 1
  • S. Yuasa
    • 1
  • T. Kawashima
    • 1
  • I. Nakanishi
    • 1
  • M. Tomobuchi
    • 1
  • T. Yokogawa
    • 1
  • A. Ando
    • 2
  • Y. Orita
    • 2
  • H. Abe
    • 2
  • T. Kikuchi
    • 3
  • H. Okamoto
    • 3
  1. 1.Kidney Disease CenterOsaka Prefectural HospitalSumiyoshi-ku, OsakaJapan
  2. 2.The 1st Dept of MedicineOsaka University Medical SchoolJapan
  3. 3.Morishita Pharm. Co., LtdJapan

Personalised recommendations