Penicillopepsin: 2.8 a Structure, Active Site Conformation and Mechanistic Implications

  • I-Nan Hsu
  • Louis T. J. Delbaere
  • Michael N. G. James
  • Theo Hofmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 92)

Abstract

Penicillopepsin is an acid protease produced by the mold Penicillium janthinellum at pH’s less than 4.1 (1). Enzyme production occurs after the mycelial growth has ceased and sporulation has begun (2). The specificity and catalytic mechanism of penicillo-pepsin are very similar to those of porcine pepsin (3). The two active site aspartic acid residues, Asp-32 and Asp-215, occur in peptide sequences of at least eight amino acid residues which are almost identical in penicillopepsin, pepsin and chymosin (1,4–10). In addition, there is an overall 32% identity of amino acid sequence between penicillopepsin and porcine pepsin; a tentative sequence alignment of these two enzymes is given in Table I using this sequence numbering of porcine pepsin (5). These facts indicate that the fungal enzyme penicillopepsin is an evolutionary homologue of the mammalian acid proteases.

Keywords

Peptide Bond Acid Protease Amide Nitrogen Porcine Pepsin Scissile Bond 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sodek, J., and Hofmann, T. (1970) Can. J. Biochem. 48, 1014–1017PubMedCrossRefGoogle Scholar
  2. 2.
    Mackinlay, A. G., and Wake, R. G. (1971) in Milk Proteins: Chemistry and Moleculary Biology Vol. 2 (McKenzie, H. A. ed) pp. 175–215, Academic Press, New YorkGoogle Scholar
  3. 3.
    Mains, G., Takahashi, M., Sodek, J., and Hofmann, T. (1971) Can. J. Biochem. 49, 1134–1149PubMedCrossRefGoogle Scholar
  4. 4.
    Cunningham, A., Wang, H.-M., Jones, S. R., Kurosky, A., Rao, L., Harris, C. I., Rhee, S. H., and Hofmann, T. (1976) Can. J. Biochem. 54, 902–914PubMedCrossRefGoogle Scholar
  5. 5.
    Tang, J., Sepulveda, P., Marciniszyn, Jr., J., Chen, K. C. S., Huang, W.-Y., Tao, N., Lin, D., and Lanier, J. P. (1973) Proc. Natl. Acad. Sci. U.S.A. 70, 3437–3439Google Scholar
  6. 6.
    Rajogopalan, T. G., Stein, W. H., and Moore, S. J. (1966) J. Biol. Chem. 241, 4295–4297Google Scholar
  7. 7.
    Bayliss, R. S., Knowles, J. R., and Wybrandt, G. B. (1969) Biochem. J. 113, 377–386PubMedGoogle Scholar
  8. 8.
    Meitner, P. A. (1971) Biochem. J. 124, 673–676PubMedGoogle Scholar
  9. 9.
    Foltmann, B., Kauffman, D., Parl, M., and Andersen, P. M. (1973) Netherlands Milk Dairy J. 27, 165–175Google Scholar
  10. 10.
    Takahashi, K., Mizobe, F., and Chang, W. J. (1972) J. Biochem. ( Tokyo ) 71, 161–164Google Scholar
  11. 11.
    Camerman, N., Hofmann, T., Jones, S., and Nyburg, S. C. (1969) J. Mol. Biol. 44, 569–570Google Scholar
  12. 12.
    Hsu, I-N., Hofmann, T., Nyburg, S. C., and James, M. N. G. (1976) Biochem. Biophys. Res. Commun. 72, 363–368Google Scholar
  13. 13.
    Codding, P. W., Delbaere, L. T. J., Hayakawa, K., Hutcheon, W. L. B., James, M. N. G., and Jurasek, L. (1974) Can. J. Biochem. 52, 208–220PubMedCrossRefGoogle Scholar
  14. 14.
    Delbaere, L. T. J., Hutcheon, W. L. B., James, M. N. G., and Thiessen, W. E. (1975) Nature 257, 758–763PubMedCrossRefGoogle Scholar
  15. 15.
    Blow, D. M., and Crick, F. H. C. (1959) Acta Crystallogr. 12, 794–802CrossRefGoogle Scholar
  16. 16.
    Subramanian, E., Swan, I. D. A., and Davies, D. R. (1976) Biochem. Biophys. Res. Commun. 68, 875–880Google Scholar
  17. 17.
    Jenkins, J. A., Blundell, T. L., Tickle, I. J., and Ungaretti, L. (1975) J. Mol. Biol. 99, 583–590Google Scholar
  18. 18.
    Richardson, J. S. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 2619–2623Google Scholar
  19. 19.
    Fruton, J. S. (1970) Adv. Enzymol. 33, 401–443PubMedGoogle Scholar
  20. 20.
    Delpierre, G. R., and Fruton, J. S. (1966) Proc. Natl. Acad. Sci. U.S.A. 56, 1817–1822Google Scholar
  21. 21.
    Knowles, J. R., and Wybrandt, G. B. (1968) FEBS Lett. 1, 211PubMedCrossRefGoogle Scholar
  22. 22.
    Chen, K. C. S., and Tang, J. (1972) J. Biol. Chem. 247, 2566–2574Google Scholar
  23. 23.
    Hartsuck, J. A., and Tang, J. (1972) J. Biol.Chem. 247, 2575–2580PubMedGoogle Scholar
  24. 24.
    Cornish-Bowden, A. J., and Knowles, J. R. (1969) Biochem. J. 113, 353–362PubMedGoogle Scholar
  25. 25.
    Kitson, T. M., and Knowles, J. R. (1971) FEBS Lett. 16, 337–338PubMedCrossRefGoogle Scholar
  26. 26.
    James, M. N. G., and Williams, G. J. B. (1971) J. Med. Chem. 14, 670–675Google Scholar
  27. 27.
    James, M. N. G., and Williams, G. J. B. (1974) Can. J. Chem. 52, 1872–1879CrossRefGoogle Scholar
  28. 28.
    James, M. N. G., and Williams, G. J. B. (1974) Acta Crystallogr. B30, 1249–1257CrossRefGoogle Scholar
  29. 29.
    Wang, J. H. (1970) in Structure-Function Relationships of Proteolytic Enzymes (Desnuelle, P., Neurath, H. and Otteson, M.,eds) pp. 251–252, Munksgaard, CopenhagenGoogle Scholar
  30. 30.
    Knowles, J. R. (1970) Philos. Trans. R. Soc. London Ser B 257, 135–146Google Scholar
  31. 31.
    Delpierre, C. R., and Fruton, J. S. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1161–1167Google Scholar
  32. 32.
    Hofmann, T. (1974) Adv. Chem. Series 136, 146–185Google Scholar
  33. 33.
    Takahashi, M., and Hofmann, T. (1975) Biochem. J. 147, 549–563PubMedGoogle Scholar
  34. 34.
    Wang, T.-T., and Hofmann, T. (1976) Biochem. J. 153, 701–712PubMedGoogle Scholar
  35. 35.
    Knowles, J. R., Bayliss, R. S., Cornish-Bowden, A. J., Greenwell, P., Kitson, T. M., Sharp, H. C., and Wybrandt, G. B. (1970) in Structure-Function Relationships of Proteolytic Enzymes“ (Desnuelle, P., Neurath, H., and Otteson, M. eds) pp. 237–250, Munksgaard, CopenhagenGoogle Scholar
  36. 36.
    Fruton, J. S. (1976) in Advances in Enzymology (Meister, A., ed) pp. 1–36, Interscience, John Wiley and Sons, New YorkGoogle Scholar
  37. 37.
    Lipscomb, W. N., Hartsuck, J. A., Reeke, G. N., Quiocho, F. A., Bethge, P. H., Ludwig, M. L., Steitz, T. A., Muirhead, H., and Coppola, J. C. (1968) Brookhaven Symp. Biol. 21, 24–90Google Scholar
  38. 38.
    Quiocho, F. A., and Lipscomb, W. N. (1971) in Advances Protein Chemistry (Afinsen, C. B., Edsall, J. T., and Richards, F. M. eds) pp. 1–78, Academic Press, New YorkGoogle Scholar
  39. 39.
    Newmark, A. K., and Knowles, J. R. (1975) J. Amer. Chem. Soc. 97, 3557–3559Google Scholar
  40. 40.
    Wang, T.-T., and Hofmann, T. (1976) Biochem. J. 153, 691–699PubMedGoogle Scholar
  41. 41.
    Lenhert, P. G. L. (1975) J. Appl. Crystallogr. 8, 568–570Google Scholar
  42. 42.
    Biochem. J. (1969) 113, 1–4Google Scholar

Copyright information

© Springer Science+Business Media New York 1977

Authors and Affiliations

  • I-Nan Hsu
    • 1
  • Louis T. J. Delbaere
    • 1
  • Michael N. G. James
    • 1
  • Theo Hofmann
    • 2
  1. 1.MRC Group on Protein Structure and FunctionUniversity of AlbertaEdmontonCanada
  2. 2.Department of BiochemistryUniversity of TorontoTorontoCanada

Personalised recommendations