Theory of Natural Line Shape

  • Luiz Davidovich
  • H. M. Nussenzveig

Abstract

The quantum-electrodynamical treatment of the emission of light by an atom has been strongly influenced by Weisskopf and Wigner’s early contribution(1) to this subject. While their work was highly successful in accounting for the observed line shape, several disturbing theoretical questions concerning the underlying assumptions remained unsettled:
  1. (i)

    An initial state for the system corresponding to an excited atomic eigenstate with no photons present was assumed, which seems quite unphysical. The state preparation and the dependence of the decay on the excitation should be discussed.

     
  2. (ii)

    It is well known that the exponential decay “ansatz” cannot be valid for all times, although deviations from it are expected to be extremely small for long-lived decaying states such as the atomic ones. However, the range of validity of the exponential decay law should be determined.

     
  3. (iii)

    The state space was restricted to a two-level atom and to the vacuum and one-photon sectors, without any indication of how to proceed in order to improve the approximation. For such a basic problem as this one, one should start from a clear-cut formulation, and a systematic procedure for deriving corrections to the Weisskopf-Wigner approximation should be given.

     

Keywords

Wave Packet Line Shape Lamb Shift Transverse Electric Field Resonant Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Notes

  1. 1.
    I. V. Weisskopf and E. P. Wigner, Z. Phys 63, 54 (1930).MATHCrossRefGoogle Scholar
  2. 2.
    W. Lamb, Phvs. Rev. 85, 259 (1952).ADSCrossRefGoogle Scholar
  3. 3.
    W. Heitler and S. T. Ma, Proc. R. Ir. Acad. Sect. A 52, 109 (1949);MathSciNetGoogle Scholar
  4. E. Arnous and S. Zienau, Hely. Phys. Acta 24, 279 (1951);MathSciNetMATHGoogle Scholar
  5. E. Arnous and K. Bleuler, Heiv. Phys. Acta 25, 581, 631 (1952).Google Scholar
  6. 4.
    E. Arnous and W. Heitler, Proc. R. Soc. London Ser. A 220, 290 (1953).ADSMATHCrossRefGoogle Scholar
  7. 5.
    W. Heitler, The Quantum Theory of Radiation, 3rd ed., Oxford University Press, London (1954).MATHGoogle Scholar
  8. 6.
    F. E. Low, Phys. Rev. 88, 53 (1952).ADSMATHCrossRefGoogle Scholar
  9. 7.
    H. M. Nussenzveig, Causality and Dispersion Relations, Academic, New York (1972), Chapter 4.Google Scholar
  10. 8.
    L. Davidovich, Ph.D. thesis, University of Rochester (1975);Google Scholar
  11. L. Davidovich and H. M. Nussenzveig, to be published.Google Scholar
  12. 9.
    H. E. Moses, Pin’s. Rev. A 8, 1710 (1973).Google Scholar
  13. 10.
    L. Van Hove, Phvsica (Utrecht) 21, 901 (1955).ADSMATHCrossRefGoogle Scholar
  14. I I. For a historical survey, see G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission, Springer-Verlag, Berlin (1974).Google Scholar
  15. 12.
    L. D. Faddeev, Soy. Phys. Dols’. 8, 881 (1964).Google Scholar
  16. 13.
    M. E. Rose, Elementary Theory of Angular Momentum, Wiley, New York (1957).MATHGoogle Scholar
  17. 14.
    F. J. Dyson, Phys. Rev. 75, 486, 1736 (1949).MathSciNetADSGoogle Scholar
  18. 15.
    E. Grimm and V. Ernst, J. Phys. A: Gen. Phvs. 7, 1664 (1974);ADSCrossRefGoogle Scholar
  19. E. Grimm and V. Ernst, Z. Phys. A 274, 293 (1975).ADSCrossRefGoogle Scholar
  20. 16.
    E. B. Davies, J. Math Phvs. 15, 2036 (1974).ADSCrossRefGoogle Scholar
  21. 17.
    See E. Grimm and V. Ernst, Z. Phys. A. 274, 293 (1975) for an example in which this condition is not fulfilled.Google Scholar
  22. 18.
    E. C. G. Stueckelberg and D. Rivier, Holy. Phvs. Acta 23, 215 (1950);MathSciNetMATHGoogle Scholar
  23. M. Fierz, Hely. Phys. Acta 23, 731 (1950).MathSciNetMATHGoogle Scholar
  24. 19.
    C. A. Coulter, Phys. Rev. A. 10, 1946 (1974).ADSCrossRefGoogle Scholar
  25. 20.
    H. A. Bethe, Phys. Rev. 72, 339 (1947).ADSMATHCrossRefGoogle Scholar
  26. 21.
    M. Göppert-Mayer, Amr. Phvs. (Leipzig) 9, 273 (1931).CrossRefGoogle Scholar
  27. 22.
    E. A. Power and S. Zienau, Nuovo Cimenta 6, 7 (1957)Google Scholar
  28. E. A. Power and S. Zienau, Philos. Trans. R. Soc. London Ser. A 251, 427 (1959);MathSciNetADSMATHCrossRefGoogle Scholar
  29. M. Babiker, E. A. Power, and T. Thirunamachandran, Proc. R. Soc. London Ser. A 338, 235 (1974).MathSciNetADSCrossRefGoogle Scholar
  30. 23.
    R. G. Woolley, Mol. Phys. 22, 1013 (1971).ADSCrossRefGoogle Scholar
  31. 24.
    A cutoff in momentum space is required in order for (9.4) and (9.5) to define a proper unitary transformation. One can adopt the same cutoff as in (8.3).Google Scholar
  32. 25.
    P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed., Oxford University Press, London (1958).MATHGoogle Scholar
  33. 26.
    M. Gavrila, Phys. Rev. 163, 147 (1967).ADSCrossRefGoogle Scholar
  34. 27.
    S. R. Lundeen and F. M. Pipkin, Phys. Rev. Lett. 34, 1368 (1975).ADSCrossRefGoogle Scholar
  35. 28.
    If this degeneracy is not removed, the first-order contribution of the minimal-coupling interaction to the 2s 112 -* 2P 1/2 + one photon transition vanishes, and one must compute higher-order contributions, leading essentially to the same results [see E. J. Kelsey, Phys. Rev. A 15, 647 (1977)].Google Scholar
  36. 29.
    J. J. Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Massachusetts (1967).Google Scholar
  37. 30.
    Z. Fried Phys. Rev. A 8 2835 (1973).Google Scholar
  38. 31.
    S. Klarsfeld, Leu. Nuovo Cimento 1, 682 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • Luiz Davidovich
    • 1
  • H. M. Nussenzveig
    • 2
  1. 1.Instituto de FísicaPontifícia Universidade Católica do Rio de JaneiroBrazil
  2. 2.Instituto de FísicaUniversidade de São PauloSão PauloBrazil

Personalised recommendations