Time-Dependent Projection-Operator Techniques in Quantum Optics

  • R. H. Picard
  • C. R. Willis
Conference paper


We wish to describe the applications in quantum optics of a systematic approach to the analysis of coupled systems. This approach enables one to treat the coupled systems on an equal footing without assuming that any part of the system is large and reservoir-like. In the Schrödinger picture this approach leads to a description of the system in terms of exact generalized master equations (ME’s) which are obtained by operating on the quantum Liouville equation with a time-dependent projection operator (TDPO).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    R. W. Zwanzig, J. Chem. Phys. 33, 1338 (1960); Lectures in Theoretical Physics, Vol. III, edited by W. E. Brittin, B. W. Downs, and J. Downs ( Interscience, New York, 1961 ), p. 106.Google Scholar
  3. 3.
    See, for example, the excellent reviews by G. S. Agarwal, Progress in Optics, Vol. XI, edited by E. Wolf (North-Holland, Amsterdam, 1973), p. 1, and by F. Haake, Springer Tracts in Mod. Phys. 66, 98 (1973).Google Scholar
  4. 4.
    B. Robertson, Phys. Rev. 144, 151 (1966); 160, 175 (1967); 166, 206 (1968).Google Scholar
  5. 5.
    K. Kawasaki and J. D. Gunton, Phys. Rev. A 8, 2048 (1973).ADSCrossRefGoogle Scholar
  6. 6.
    C. R. Willis and R. H. Picard, Phys. Rev. A 9, 1343 (1974).ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    C. R. Willis, Gen. Rel. Gray. 7, 69 (1976).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    R. H. Picard and C. R. Willis, Bull. Am. Phys. Soc. 21, 114 (1976); Phys. Rev. A 16, 1625 (1977).MathSciNetGoogle Scholar
  9. 9.
    For other recent applications of TDPO’s, see H. Grabert and W. Weidlich, Z. Phys. 268, 139 (1974) and H. Grabert, Z. Phys. B 27, 95 (1977).Google Scholar
  10. 10.
    P. N. Argyres and P. L. Kelley, Phys. Rev. 134, A98 (1964).ADSCrossRefGoogle Scholar
  11. 11.
    C. R. Willis and R. H. Picard, Coherence and Quantum Optics, edited by L. Mandel and E. Wolf ( Plenum Press, New York, 1973 ), p. 675.Google Scholar
  12. 12.
    R. H. Picard and C. R. Willis, Phys. Rev. A 8, 1536 (1973).ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    See, for instance, S. Haroche, in this Volume, p. 539; and Q.H.F. Vrehen, H.M.J. Hikspoors and H.M. Gibbs, in this Volume, p. 543.Google Scholar
  14. 14.
    C. R. Willis, Kinetic Equations, edited by R. L. Liboff and N. Rostoker ( Gordon and Breach, New York, 1971 ), p. 235.Google Scholar
  15. 15.
    See, for example, T. - Y. Wu, Kinetic Equations of Gases and Plasmas ( Addison-Wesley, Reading, Massachusetts, 1966 ), p. 62.Google Scholar
  16. 16.
    H. Mori, Prog. Theor. Phys. 33, 423 (1965).ADSCrossRefzbMATHGoogle Scholar
  17. 17.
    For example, K. Wódkiewicz and J. H. Eberly, Ann. Phys. (N.Y.) 101, 574 (1976), and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. H. Picard
    • 1
  • C. R. Willis
    • 2
  1. 1.Rome Air Development CenterHanscom Air Force BaseUSA
  2. 2.Boston UniversityBostonUSA

Personalised recommendations