Advertisement

Photon Statistics, Instabilities and Phase Transitions in Dye Lasers

  • Charles R. Willis
Conference paper

Abstract

Recently Ray Schaefer and I [1] showed that the behavior of a dye laser could be considerably different than the usual laser behavior. Subsequently we indicated that the anomalous behavior of the dye laser could be interpreted in terms of a first order phase transition [2], instead of the conventional second order [3–5] laser phase transition analogy. In the present paper I want to develop the laser phase transition analogy further, in order to understand better the fundamentally different behavior possible in dye lasers, to develop further the differences between the second order and first order laser phase transitions analogies and to examine the role of fluctuations in phase transitions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.B. Schaefer and C.R. Willis, Phys. Rev. A13, 1874 (1976), hereafter referred to as [1].Google Scholar
  2. 2.
    R.B. Schaefer and C.R. Willis, Phys. Letters 58A, 53 (1976).Google Scholar
  3. 3.
    V. DeGiorgio and Marlan 0. Scully, Phys. Rev. A2, 1170 (1970).ADSCrossRefGoogle Scholar
  4. 4.
    R. Graham and H. Haken, Z. Physik 237, 31 (1970).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    V. DeGiorgio, Physics Today 29, 42 (1976).CrossRefGoogle Scholar
  6. 6.
    R. Landauer, J. Appl. Phys. 33, 2209 (1962).ADSCrossRefGoogle Scholar
  7. 7.
    M. Lax and W.H. Louisell, IEEE J. Quantum Electron. 3, 67 (1967).ADSGoogle Scholar
  8. 8.
    H. Haken, Rev. Mod. Phys. 47, 67 (1975).ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    A.P. Kazantsev and G.L. Surdutovich, Zh. eksp. teor. Fiz. 58, 245, (1970).Google Scholar
  10. A.P. Kazantsev and G.L. Surdutovich, [Sov. Phys. - JETP 31,133 (1970)].Google Scholar
  11. 10.
    R. Salomaa, J. Phys. A7, 1094 (1974).ADSGoogle Scholar
  12. 11.
    J.F. Scott, M. Sargent III, and C.D. Cantrell, Optics Comm. 15, 13 (1975).ADSCrossRefGoogle Scholar
  13. 12.
    R.J. Glauber in Quantum Optics and Electronics, edited by C. DeWitt, A. Blandin and C. Cohen-Tannoudji ( Gordon and Breach, New York, 1965 ).Google Scholar
  14. 13.
    R. Graham, in Fluctuations, Instabilities and Phase Transitions,edited by T. Riste (Plenum Press, New York, 1975), as well as the earlier papers of R. Graham cited therein.Google Scholar
  15. 14.
    A.P. Kazantsev and G.L. Surdutovich, Zh. eksp. teor. Fiz. 56, 2001 (1969).Google Scholar
  16. A.P. Kazantsev and G.L. Surdutovich, [Sov. Phys. - JETP 29,1075 (1969)].Google Scholar
  17. 15.
    See, for example, N. Minorsky, Nonlinear Oscillations ( Van Nostrand, New York, 1962 ).zbMATHGoogle Scholar
  18. 16.
    C.R. Willis, to be published.Google Scholar
  19. 17.
    H.A. Kramers, Physica 7, 284 (1940).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  20. 18.
    J.A. Abate, H.J. Kimble, and L. Mandel, Phys. Rev. A14, 788 (1976).ADSCrossRefGoogle Scholar
  21. 19.
    A. Baczynski, A. Kossakowski and T. Marszalek, Zeits. Physik B 23, 205 (1976).Google Scholar
  22. 20.
    S.T. Dembinski and A. Kossakowski, Zeits Physik B24, 141 (1976).Google Scholar
  23. 21.
    A. Baczynski, A. Kossakowski and T. Marszalek, Zeits. Physik B 26, 93 (1977).Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Charles R. Willis
    • 1
  1. 1.Boston UniversityBostonUSA

Personalised recommendations