Advertisement

A Description of Laser Stability near Threshold by Liapounov’s Second Method

  • Adi R. Bulsara
  • William C. Schieve
Conference paper

Abstract

The theory of the generalized entropy developed by Prigogine, George and Henin [1] in Brussels and Austin suggests a form for an N-body Liapounov function which has already been discussed for closed systems [2–4]. Starting from the Liouville-von Neumann equation for the density operator ρ, Prigogine introduces a causal or physical particle representation wherein he defines a “physical” density matrix ρ(P) which is generated from ρ by a non-unitary transformation in strongly coupled system., this representation, the retarded and advanced components of ρ(P) obey separate evolution equations. For weakly coupled systems, ρ(P) reduces to the untransformed ρ which is a solution to the Pauli equation. This theory has been applied by Hubert [5] to a dense hard sphere gas obeying the Enskog equation. Further, Bulsara and Schieve have demonstrated [2] that infinitesimally close to thermal equilibrium, the generalized form of the entropy proposed by Prigogine et al. has the same form as the Liapounov function referred to above, for weakly coupled systems, a fact which we shall exploit in section 5 of this paper.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prigogine, I., George, C., Henin, F. and Rosenfeld, L., Chemica Scripta 4, 5 (1973).Google Scholar
  2. 2.
    Bulsara, A.R., and Schieve, W.C., J. Chem. Phys. 65, 2532 (1976)ADSCrossRefGoogle Scholar
  3. Bulsara, A.R., and Schieve, W.C., in Int. Jl. of Quantum Chemistry, S9, 475 (1975).Google Scholar
  4. 3.
    Schieve, W.C., Int. Jl. of Quantum Chemistry, S10, 375 (1976).CrossRefGoogle Scholar
  5. 4.
    Henin, F., Physica 76, 201 (1974).ADSCrossRefMathSciNetGoogle Scholar
  6. 5.
    Hubert, D., J. Stat. Phys. 15, 1 (1976).CrossRefGoogle Scholar
  7. 6.
    Sargent, M., Scully, M. and Lamb, W., Laser Physics ( Addison-Wesley, Reading, Mass., 1974 ).Google Scholar
  8. 7.
    Risken, H. and Nummedal, K., J. Appl. Phys. 39, 4662 (1968).ADSCrossRefGoogle Scholar
  9. 8.
    Kondepudi, D., Phys. Lett. 59A, 17 (1976).ADSCrossRefGoogle Scholar
  10. 9.
    Hofelich-Abate, E. and Hofelich, F., Z. Physik 211, 142 (1968).ADSCrossRefGoogle Scholar
  11. 10.
    Walgraef, D., J. Stat. Phys. 14, 399 (1976).ADSCrossRefGoogle Scholar
  12. 11.
    Glansdorff, P. and Prigogine, I., Structure, Stability and Fluctuations (J. Wiley, New York, 1971 ).zbMATHGoogle Scholar
  13. 12.
    Vahey, D.W. and Yariv, A., Phys. Rev. A10, 1578 (1974).ADSCrossRefGoogle Scholar
  14. 13.
    Tang, C.L., J. Appl. Phys. 34, 2935 (1963).ADSCrossRefGoogle Scholar
  15. 14.
    Haken, H., Handbuch der Physik, Vol. 25/2C (Springer-Verlag, Berlin, 1970 ) and in Quantum Optics, ed. Kay and Maitland ( Academic Press, New York, 1970 ).Google Scholar
  16. 15.
    Bleistein, N. and Handelsman, R., Asymptotic Expansions of Integrals (Holt, Rhinehart and Winston, New York, 1975 ).zbMATHGoogle Scholar
  17. 16.
    Weidlich, W. and Haake, F., Z. Physik 185, 30 (1965).ADSCrossRefzbMATHGoogle Scholar
  18. 17.
    Arzt, V., Haken, H., Risken, H., Sauermann, H., Schmid, Ch., and Weidlich, W., Z. Physik 197, 207 (1966).ADSCrossRefGoogle Scholar
  19. 18.
    deGroot, S. and Mazur, P., Non-Equilibrium Thermodynamics ( North-Holland, Amsterdam, 1969 ).Google Scholar
  20. 19.
    Klein, M. and Meijer, P., Phys. Rev. 96, 250 (1954)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. Meijer, P., in Transport Processes in Statistical Mechanics (IUPAP Symposium, Brussels, 1956, I. Prigogine, editor).Google Scholar
  22. 20.
    Callen, H., in Transport Processes in Statistical Mechanics (IUPAP Symposium, Brussels,1956, I. Prigogine, editor).Google Scholar
  23. 21.
    Prigogine, I.P. and Nicolis, G., Self-Organization in Non-Equilibrium Systems (J. Wiley, New York, 1977 ).Google Scholar
  24. 22.
    Risken, H., Z. Physik 186, 85 (1965).ADSCrossRefGoogle Scholar
  25. 23.
    Gantmacher, F.R., Theory of Matrices ( Chelsea Publ., New York, 1960 ).Google Scholar
  26. 24.
    Nicolis, G., J. Stat. Phys. 6, 195 (1972)ADSCrossRefGoogle Scholar
  27. Gardiner, C.W., McNeil, K., Walls, D. and Matheson, I., J. Stat. Phys. 14, 307 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • Adi R. Bulsara
    • 1
  • William C. Schieve
    • 1
  1. 1.University of TexasAustinUSA

Personalised recommendations