Advertisement

Memory Function Methods for Quantum Systems in Contact with Reservoirs

  • A. Zardecki
Conference paper

Abstract

In recent years increasing use has been made of methods of quantum statistics and stochastic processes in a variety of problems in quantum optics. A comprehensive list of references can be found in the review articles of Agarwal [1] and Haken [2], see also a recent work of Gronchi and Lugiato [3]. In many cases of practical interest one is concerned with the dynamics of an open systems S moving irreversibly under the influence of a reservoir R. Ultimately, the properties of S are inferred through the elimination of the R-variables. This is usually accomplished by two complementary approaches:
  1. (i)

    The elimination procedure in the Schrödinger picture leads to an equation for a reduced density operator (master equation).

     
  2. (ii)

    The elimination procedure in the Heisenberg picture leads to a generalized, including memory effects, Langevin equation.

     

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.S. Agarwal, in Progress in Optics, Vol. XI, ed. E. Wolf ( North-Holland, Amsterdam, 1973 ) p. 3.Google Scholar
  2. 2.
    H. Haken, Rev. Mod. Phys. 47, 67 (1975).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Gronchi and L.A. Lugiato, Phys. Rev. A13, 830 (1976).ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Bose and D.T. Ng, Phys. Rev. A11, 1001 (1975).Google Scholar
  5. 5.
    S.K. Bose and D.T. Ng, Phys. Rev. A13, 1548 (1976).ADSCrossRefGoogle Scholar
  6. 6.
    W.H. Louisell, Quantum Statistical Properties of Radiation (John Wiley, New York,1973) chapters 6 and 7.Google Scholar
  7. 7.
    W. Weidlich, Z. Physik, 241, 325 (1971).ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    H. Mori, Prog. Theoret. Phys. (Kyoto) 33, 423 (1965).CrossRefzbMATHGoogle Scholar
  9. 9.
    W. Weidlich, Z. Physik, 248, 234 (1971).ADSCrossRefMathSciNetGoogle Scholar
  10. 10.
    R. Bonifacio and F. Haake, Z. Physik, 200, 526 (1967).ADSCrossRefGoogle Scholar
  11. 11.
    T. Kawasaki, Progr. Theoret. Phys. 49, 2151 (1973).Google Scholar
  12. 12.
    R. Bonifacio, P. Schwendimann and F. Haake, Phys. Rev. A4, 302 (1971).ADSCrossRefGoogle Scholar
  13. 13.
    R.J. Glauber and F. Haake, Phys. Rev. A13, 357 (1976).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • A. Zardecki
    • 1
  1. 1.Université LavalQuébecCanada

Personalised recommendations