Advertisement

Cooperative Effects in Optical Bistability and Resonance Fluorescence

  • R. Bonifacio
  • L. A. Lugiato
Conference paper

Abstract

Cooperative phenomena in far-from-equilibrium open systems are presently the object of an ever increasing interest [1]. At a phenomenological level they are described by a set of nonlinear equations with suitable damping terms. Just the interplay of nonlinearity and dissipation gives rise to a large variety of phenomena. Among them, one of the most interesting possibilities is the appearance of phase transitions in stationary nonequilibrium states.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See e.g. a) P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations (Wiley, New York, 1971). b) Synergetics, ed. by H. Haken ( Teubner, Stuttgart, 1973 ).Google Scholar
  2. 2.a)
    H. Haken, Handbuch der Physik, vol. XXV/2C (Springer-Verlag, Berlin, 1970 ).Google Scholar
  3. 2.b)
    M. Sargent III, M.O. Scully and W.E. Lamb,Jr., Laser Physics ( Addison-Wesley, Mass., 1974 ).Google Scholar
  4. 3.a)
    V. Degiorgio and M.O. Scully, Phys. Rev. A2, 1170 (1970).Google Scholar
  5. 3.b)
    R. Graham and H. Haken, Z. Physik 213, 420 (1968).Google Scholar
  6. 4.
    S.L. McCall, Phys. Rev. A9, 1515 (1974).ADSCrossRefGoogle Scholar
  7. 5.
    H.M. Gibbs, S.L. McCall and T.N.C. Venkatesan, Phys. Rev. Lett. 36, 1135 (1976).ADSCrossRefGoogle Scholar
  8. 6.
    R. Bonifacio and L.A. Lugiato, Phys. Rev. All, 1507 (1975); 12, 587 (1975).ADSGoogle Scholar
  9. 7.
    I.e. neglecting factors 2 and assuming that γl ≃ γ11 ≃ γ, where γ11 is the longitudinal atomic relaxation rate.Google Scholar
  10. 8.a)
    B.R. Mollow, Phys. Rev. 188, 1969 (1969).Google Scholar
  11. 8.b)
    G. Oliver, E. Ressayre and A. Tallet, Lett. Nuovo Cimento 2, 777 (1971)Google Scholar
  12. 8.c)
    H.S. Carmichael and D.F. Walls, J. Phys. B 9, 1199 (1976).Google Scholar
  13. 9.a)
    R. Bonifacio and L.A. Lugiato, Opt. Comm. 19, 172 (1976).Google Scholar
  14. 9.b)
    R. Bonifacio and L.A. Lugiato, Phys. Rev. March-April, 1978.Google Scholar
  15. 10.
    I.I. Rabi, Phys. Rev. 51, 652 (1937).ADSCrossRefGoogle Scholar
  16. 11.
    R. Friedberg and S.R. Hartmann, Phys. Lett. 37A, 285 (1971).ADSCrossRefGoogle Scholar
  17. 12.
    Other Optical Systems in which nonlinear absorption gives rise to bistability are i) the laser with saturable absorber, see J.F. Scott, M. Sargent III, C.D. Cantrell, Opt. Comm. 15,13 (1975); ii) the dye laser, see S.T. Dembinski and A. Kossakowski, Z. Physik B24,141 (1976) and references quoted therein.Google Scholar
  18. 13.
    Actually in the experiment of Ref. 5 nonlinear dispersion is dominant over nonlinear absorption. For the sake of simplicity, as in Ref. 4, in the present paper we consider the purely absorptive case.Google Scholar
  19. 14.
    R. Landauer and S.W.F. Woo, in Ref. 1 (b).Google Scholar
  20. 15.
    Note in Eq. (4.2) that the shift ΩI coincides with that predicted by the one-atom theory [9] in the high intensity limit. Furthermore, for γ11= 2γ1 one sees that 2 Re\( \bar \lambda \) coincides with the width of the sidebands as predicted in Ref. 9.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. Bonifacio
    • 1
    • 2
  • L. A. Lugiato
    • 1
  1. 1.Università di MilanoMilanoItaly
  2. 2.Also Istituto Nazionale di OtticaFirenzeItaly

Personalised recommendations