Advertisement

On the Decomposition of the Electromagnetic Field into Its Natural Modes

  • B. J. Hoenders
Conference paper

Abstract

Recently, amongst others, Wolf and Pattanayak [1] generalized the classical Ewald-Oseen extinction theorem, which is usually regarded to be only valid for molecular optics, to electromagnetic fields in the presence of an arbitrary material medium. Their theory leads to a general definition of the so-called natural modes of the electromagnetic field.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Wolf in Symposia Mathematica (Academic Press, London and New York, 1976), vol. 18; see also D.N. Pattanayak, Ph.D. thesis, University of Rochester, Rochester, New York, 1973; Opt. Comm. 6, 217 (1972)Google Scholar
  2. 2.
    G.S. Agarwal, Phys, Rev. 8B, 4768 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    J.A. Stratton, Electromagnetic Theory ( McGraw-Hill, New York, 1941 ).zbMATHGoogle Scholar
  4. 4.
    G. Wolfsohn, Handbuch der Physik,vol. 20 (H, Geiger and K. Scheel), (Springer, Berlin, 1928), chapter 7, §1 (265).Google Scholar
  5. 5.
    C.E. Weatherburn, Trans. Cambr, Phil. Soc. 22, 133 (1916); see also the Quart. J. of Pure and Appl. Math. 46, 334 (1915).zbMATHGoogle Scholar
  6. 6.
    Ph. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), vol. II, Eq. (13. 1, 7 ).Google Scholar
  7. 7.
    E.T. Whittaker and G.N. Watson, A Course of Modern Analysis(Cambridge University Press, 1963), §7.4.Google Scholar
  8. 8.
    E.J. Fredholm, Acta Math. 27, 378 and 379 (1903).Google Scholar
  9. 9.
    E.C. Titchmarsh, Eigenfunction Expansions,vol. 2 (Clarendon Press, Oxford, 1970) §11.11.Google Scholar
  10. 10.
    C. Miranda, Act. Pontificia, Acad. Scient. 3, 1, (1939).Google Scholar
  11. 11.
    M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1975), 5th edition, §13.5. See especially for the case Pi and 112 1; T.J.I’A. Bromwich, Phil. Mag. 38, 143 (1919).Google Scholar
  12. 12.
    D.N. Pattanayak and E. Wolf, Phys. Rev. D13, 913, 2287 (1976).ADSMathSciNetGoogle Scholar
  13. 13.
    P. Debye, Ann. Physik 30,57 (1909)Google Scholar
  14. 14.
    C. Mie, Ann. Physik 25, 377 (1900).Google Scholar
  15. 15.
    H.M. Nussenzweig, Causality and Dispersion Relation (Academic Press, New York, 1972), especially Eq. (2. 3. 13 ).Google Scholar
  16. 16.
    R.E.A.C. Paley and N. Wiener, Am. Math. Soc. Coil. Publ.(Am. Math. Soc. Proc. R.J., 1934), vol. 19, chapter 6.Google Scholar
  17. 17.
    A.J. Siegert, Phys. Rev. 56, 750 (1939).ADSCrossRefGoogle Scholar
  18. 18.
    R.G.Newton, Scattering Theory of Waves and Particles(McGraw-Hill, New York, 1966) §12.2, Eq. (12.137).Google Scholar
  19. 19.
    H. Weyl, Journ. f. Math. 141, 163 (1912) and 143, 177 (1913); Math. Ann. 71, 441 (1912); Rend. di Palermo 39, 1 (1915).CrossRefzbMATHGoogle Scholar
  20. 20.
    H.P. Baltes, Appl. Phys. 12, 221 (1977), especially 52.4, 52.5 and 52. 6.Google Scholar
  21. 21.
    L. Sirovich, Techniques of Asymptotic Analysis (Springer, New York, 1971) 52.8 and 52. 9.Google Scholar
  22. 22.
    D.N. Pattanayak, this Volume, p. 209.Google Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • B. J. Hoenders
    • 1
  1. 1.State University at GroningenGroningenThe Netherlands

Personalised recommendations