Advances in Molten Salt Chemistry pp 83-198 | Cite as
High-Temperature Coordination Chemistry of Group VIII
Chapter
Abstract
The bulk of our discussion is concerned with electronic spectroscopy but we shall indicate the various other methods available to help in the elucidation of the coordination of Group VIII metal ions at high temperatures. The two types of information which electronic spectroscopy can provide under favorable circumstances are the number and arrangement of ligands about the central metal and the distribution of electronic charge within the moiety, albeit the expression of the latter is usually restricted to a listing of the first few energy levels.
Keywords
Oscillator Strength Diatomic Molecule Group VIII Cobalt Species Molten Salt System
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.H. A. Levy, P. A. Agron, M. A. Bredig, and M. D. Danford, Ann. N. Y. Acad. Sci. 79: 762 (1960).Google Scholar
- 2.S. C. Wait, Jr., A. T. Ward, and G. J. Janz, J. Chem. Phys. 45: 133 (1966).Google Scholar
- 3.S. Hafner and N. H. Nachtrieb, J. Chem. Phys. 40: 2891 (1964).Google Scholar
- 4.J. Brown, UCRL 9944 (UC-4 Chemistry), TID 4500 (16th ed.), December 13, 1961.Google Scholar
- 5.L. Yarmus, M. Kukk, and B. R. Sundheim, J. Chem. Phys.40: 33 (1964).Google Scholar
- 6.T. B. Swanson, J. Chem. Phys. 45: 179 (1966).Google Scholar
- 7.N. H. Nachtrieb, J. Phys. Chem. 66: 1163 (1962).Google Scholar
- 8.A. Berlin and N. Nghi, Compt. Rend. (C) 262: 1421 (1966).Google Scholar
- 9.D. Inman, D. G. Lovering, and R. Narayan, Trans. Faraday Soc. 64: 2476 (1968).Google Scholar
- 10.S. H. White, D. Inman, and B. Jones, Trans. Faraday Soc. 64: 2841 (1968).Google Scholar
- 11.D. Inman, B. Jones, and S. H. White, J. Inorg. Nucl. Chem. 32: 927 (1970).Google Scholar
- 12.R. S. Juvet, Jr., V. R. Shaw, and M. A. Khan, J. Ant. Chem. Soc. 91: 3788 (1969).Google Scholar
- 13.G. J. Janz, Molten Salts Handbook, Academic Press, New York (1967).Google Scholar
- 14.J. E. Ricci, in: Molten Salt Chemistry( M. Blander, ed.), Wiley-Interscience, New York (1964).Google Scholar
- 15.C. M. Cook and W. E. Dunn, Jr., J. Phys. Chem. 65: 1505 (1961).Google Scholar
- 16.K. F. Zmbov and J. L. Margrave, J. Phys. Chem. 70: 3379 (1966).Google Scholar
- 17.E. Iberson, R. Gut, and D. M. Gruen, J. Phys. Chem. 66: 65 (1962).Google Scholar
- 18.F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 2nd ed., WileyInterscience, New York (1966).Google Scholar
- 19.M. M. Jones, Elementary Coordination Chemistry, Prentice-Hall, Englewood Cliffs, N. J. (1964).Google Scholar
- 20.W. P. Griffith, The Chemistry of the Rarer Platinum Metals, Wiley-Interscience, New York (1967).Google Scholar
- 21.H. J. Emeleus and A. G. Sharpe (eds.), Advances in Inorganic Chemistry and Radiochemistry, Academic Press, New York (one or two volumes per annum from 1959 ).Google Scholar
- 22.Progress in Inorganic Chemistry (F. A. Cotton, ed., to Vol. 10 and S. J. Lippard, ed., from Vol. 11), Wiley-Interscience, New York (one or two volumes per annum from 1959).Google Scholar
- 23.R. L. Carlin (ed.), Transition Metal Chemistry, Marcel Dekker, New York (from 1965 ).Google Scholar
- 24.E. U. Condon and G. H. Shortley, The Theory of Atonic Spectra, University Press, Cambridge (1935).Google Scholar
- 25.H. E. White, Introduction to Atomic Spectra, McGraw-Hill, New York (1934).Google Scholar
- 26.R. Mavrodineanu and H. Boiteux, Flame Spectroscopy, Wiley, Nev.:, York (1965).Google Scholar
- 27.G. Bract, Phys. Rev. 28: 334 (1926).Google Scholar
- 28.H. N. Russell, Phys. Rev. 29: 782 (1927).Google Scholar
- 29.B. G. Wybourne, “Spectroscopic Properties of Rare Earths,” Wiley-Interscience, New York (1965).Google Scholar
- 30.G. H. Shortley and B. Fried, Phys. Rev. 54: 749 (1938).Google Scholar
- 31.B. Edlen, in: Handbuch der Physik, Vol. XXVII, Springer-Verlag, Heidelberg (1964).Google Scholar
- 32.G. Racah, Phys. Rev. 85: 381 (1952).Google Scholar
- 33.J. C. Slater, Quantum Theory of Atomic Sctructure, McGraw-Hill, New York (1960).Google Scholar
- 34.E. U. Condon, Phys. Rev. 36: 1121 (1930).Google Scholar
- 35.B. O. Jordan and E. Wigner, Z. Physik 47: 631 (1928).Google Scholar
- 36.R. Stevenson, Multiplet Structure of Atoms and Molecules, Saunders, Philadelphia (1965).Google Scholar
- 37.G. Racah, Phys. Rev. 62: 438 (1942).Google Scholar
- 38.J. H. Van Vleck, Phys. Rev. 45: 405 (1934).Google Scholar
- 39.G. W. King, Spectroscopy and Molecular Structure, Holt, Rinehart and Winston, New York (1960).Google Scholar
- 40.M. Born and R. Oppenheimer, Ann. Physik 84: 457 (1927).Google Scholar
- 41.G. Herzberg, Molecular Spectra and Molecular Structure, I. Diatomic Molecules, Prentice-Hall, New York (1939).Google Scholar
- 42.R. S. Mulliken, Rev. Mod. Phys. 3: 89 (1931).Google Scholar
- 43.F. Hund, Z. Physik36: 657 (1925).Google Scholar
- 44.R. S. Mulliken, Rev. Mod. Phys. 2: 60 (1930).Google Scholar
- 45.E. Wigner and E. E. Witmer, Z. Physik 51: 859 (1928).Google Scholar
- 46.R. S. Mulliken, Rev. Mod. Phys.4: 1 (1932).Google Scholar
- 47.R. S. Mulliken, Phys. Rev. 36: 1440 (1930).Google Scholar
- 48.A. G. Gaydon, Dissociation Energies and Spectra of Diatomic Molecules, 3rd ed., Chapman and Hall, London (1968).Google Scholar
- 49.R. S. Mulliken, Phys. Rev. 32: 186 (1928).Google Scholar
- 50.R. S. Mulliken, Int. J. Quant. Chem. 1: 103 (1967).Google Scholar
- 51.W. Heitler and F. London, Z. Physik 44: 455 (1927).Google Scholar
- 52.J. C. Slater, Phys. Rev. 37: 481 (1931).Google Scholar
- 53.J. C. Slater, Phys. Rev. 38: 1109 (1931).Google Scholar
- 54.L. Pauling, J. Arn. Chem. Soc.53: 1367, 3225 (1931).Google Scholar
- 55.G. Herzberg, Molecular Spectra and Molecular Structure, III. Electronic Spectra and Electronic Structure of Polyatomic Molecule, Van Nostrand, Princeton, N. J. (1966).Google Scholar
- 56.F. Hund, Z. Physik 51: 759 (1928).Google Scholar
- 57.F. Hund, Z. Physik 63: 719 (1930).Google Scholar
- 58.J. E. Lennard-Jones, Trans. Faraday Soc. 25: 668 (1929).Google Scholar
- 59.J. E. Lennard-Jones, Proc. Roy. Soc. LondonA198: 1, 14 (1949).Google Scholar
- 60.J. E. Lennard-Jones, J. A. Pople, and G. G. Hall, Proc. Roy. Soc. LondonA202: 155, 166, 323 (1950).Google Scholar
- 61.D. R. Hartree, Proc. Carob. Phil. Soc. 24: 89 (1928).Google Scholar
- 62.V. Fock, Z. Physik 61: 126 (1930).Google Scholar
- 63.L. Brillouin, Actualités Scientifiques(Paris) IV (1934).Google Scholar
- 64.C. J. Roothaan, Rev. Mod. Phys. 23: 69 (1951).Google Scholar
- 65.C. J. Roothaan, Rev. Mod. Phys. 32: 179 (1960).Google Scholar
- 66.W. Moffitt, Rept. Progr. Phys. 17: 173 (1954).Google Scholar
- 67.P.-O. Löwdin, Adv. Chem. Phys.2: 207 (1959).Google Scholar
- 68.P.-O. Löwdin, Quantum Theory of Atoms, Molecules and Solids, Academic Press, New York (1966).Google Scholar
- 69.K. D. Carlson and C. R. Claydon, in: Advances in High-Temperature Chemistry, Vol. 1, p. 43( L. Eyring, ed.), Academic Press, New York (1967).Google Scholar
- 70.R. A. Berg and O. Sinanoglu, J. Chem. Phys. 32: 1082 (1960).Google Scholar
- 71.C. K. Jorgensen, Mol. Phys. 7: 417 (1964).Google Scholar
- 72.C. J. Cheetham and R. F. Barrow, in: Advances in High-Temperature ChemistryVol. 1, p. 7 (L. Eyring, ed.), Academic Press, New York (1967). Google Scholar
- 73.S. B. Schneiderman, Int. J. Quant. Chem. 2: 89 (1968).Google Scholar
- 74.J. S. Griffith, The Theory of Transition-Metal Ions, University Press, Cambridge (1961).Google Scholar
- 75.F. A. Cotton, Chemical Applications of Group Theory, Wiley-Interscience, New York (1963).Google Scholar
- 76.C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Addison-Wesley, Reading (1962).Google Scholar
- 77.C. K. Jorgensen, Adv. Chem. Phys. 5: 33 (1963).Google Scholar
- 78.Y. Tanabe and S. J. Sugano, J. Phys. Soc. Japan 9: 753, 766 (1954).Google Scholar
- 79.M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-j and 6-j Symbols, MIT Press, Cambridge, Mass. (1959).Google Scholar
- 80.C. W. Nielson and G. F. Koster, Spectroscopic Coefficients for p“, d”, and fn Configurations, MIT Press, Cambridge, Mass. (1963).Google Scholar
- 81.G. Racah, Phys. Rev. 61: 186 (1942).Google Scholar
- 82.G. Racah, Phys. Rev. 63: 367 (1943).Google Scholar
- 83.G. Racah, Phys. Rev. 76: 1352 (1949).Google Scholar
- 84.L. E. Biedenharn and H. Van Dam, Quantum Theory of Angular Momentum, Academic Press, New York (1965).Google Scholar
- 85.W. Moffitt, G. L. Goodman, M. Fred, and B. Weinstock, Mol. Phys. 2: 109 (1959).Google Scholar
- 86.A. D. Liehr, J. Phys. Cheer. 64: 43 (1960).Google Scholar
- 87.K. W. Fung and K. E. Johnson, J. Inorg. Noel. Chem. 33: 1407 (1971).Google Scholar
- 88.J. S. Griffith, Disc. Faraday Soc. 26: 173 (1958).Google Scholar
- 89.A. Abragam and M. H. L. Pryce, Proc. Roy. Soc. London A205: 135 (1951).Google Scholar
- 90.R. F. Fenske, D. S. Martin, Jr., and K. Ruedenberg, brorg. Chun. 1: 441 (1962).Google Scholar
- 91.D. S. Martin, Jr., M. A. Tucker, and A. J. Kassman, Inorg. Chem. 5: 1298 (1966).Google Scholar
- 92.H. B. Gray and C. J. Ballhausen, J. Am. Chem. Soc. 85: 260 (1963).Google Scholar
- 93.W. R. Mason, III and H. B. Gray, J. Am. Chem. Soc. 90: 5721 (1968).Google Scholar
- 94.H. B. Gray, Transition Metal Chemistry 1: 239 (1965).Google Scholar
- 95.J. Chatt, L. E. Orgel, and G. A. Gamlen, J. Chem. Soc.1958: 486.Google Scholar
- 96.J. T. Hougen, G. E. Leroi, and T. C. James, J. Cheer. Phys. 34: 1670 (1961).Google Scholar
- 97.C. W. DeKock and D. M. Gruen, J. Chem. Phys. 44: 4387 (1966).Google Scholar
- 98.C. W. DeKock and D. M. Gruen, J. Chem. Phys. 46: 1096 (1967).Google Scholar
- 99.H. B. Gray, in: Structural Chemistry and Molecular Biology, (A. Rich and N. Davidson, eds.), p. 783, Freeman, San Francisco (1968).Google Scholar
- 100.C. J. Ballhausen and H. B. Gray, Inorg. Chem. 1: 111 (1962).Google Scholar
- 101.P. T. Manoharan and H. B. Gray, Inorg. Chem. 5: 823 (1966).Google Scholar
- 102.C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory, Benjamin, New York (1964).Google Scholar
- 103.H. Basch, Ph. D. thesis, Columbia Univ., New York (1966).Google Scholar
- 104.M. Wolfsberg and L. Helmholz, J. Chem. Phys. 20: 837 (1952).Google Scholar
- 105.H. Basch, A. Viste, and H. B. Gray, Theoret. Chico. Acta 3: 458 (1965).Google Scholar
- 106.H. Basch, A. Viste, and H. B. Gray, J. Chem. Phys. 44: 10 (1966).Google Scholar
- 107.S. Yamada and R. Tsuchida, Bull. Chem. Soc. Japan 26: 15 (1953).Google Scholar
- 108.R. F. Barrow and M. Senior, Nature 223: 1359 (1969).Google Scholar
- 109.W. J. M. Gissane and R. F. Barrow (1966); unpublished, cf. Ref. 72.Google Scholar
- 110.J. R. Marquart and J. Berkowitz, J. Chem. Phys. 39: 283 (1963).Google Scholar
- 111.P. Coppens, S. Smoes, and J. Drowart, Trans. Faraday Soc. 64: 630 (1968).Google Scholar
- 112.B. Rosen, Données Spectroscopiques Concernant les Molécules Diatomiques, Hermann, Paris (1951).Google Scholar
- 113.S. P. Reddy and P. T. Rao, J. Mol. Spectry. 4: 16 (1960).Google Scholar
- 114.S. P. Reddy, J. Sci. Ind. Res. (India) 18B: 188 (1959).Google Scholar
- 115.A. Kant and B. Strauss, J. Chem. Phys. 41: 3806 (1964).Google Scholar
- 116.L. Kynning and H. Neuhaus, Z. Naturforsch. 18a: 1142 (1963).Google Scholar
- 117.S. V. K. Rao and P. T. Rao, Indian J. Phys. 35: 556 (1961).Google Scholar
- 118.S. V. K. Rao and P. T. Rao, Indian J. Phys. 36: 609 (1962).Google Scholar
- 119.A. Kant, J. Chem. Phys. 41: 1872 (1964).Google Scholar
- 120.N. Aslund, H. Neuhaus, A. Lagerqvist, and E. Andersen, Arkiv Fysik 28: 271 (1964).Google Scholar
- 121.R. T. Grimley, R. P. Burns, and M. G. Inghram, J. Chem. Phys. 35: 551 (1961).Google Scholar
- 122.V. G. Krishnamurty, Indian J. Phys. 27: 354 (1953).Google Scholar
- 123.E. M. Bulewiez, L. F. Phillips, and T. M. Sugden, Trans. Faraday Soc. 57: 921 (1961).Google Scholar
- 124.S. P. Reddy and P. T. Rao, Proc. Phys. Soc. (London) 75: 275 (1960).Google Scholar
- 125.S. V. K. Rao, S. P. Reddy, and P. T. Rao, Z. Physik 166: 261 (1962).Google Scholar
- 126.A. Kant, J. Chem. Phys. 44: 2450 (1966).Google Scholar
- 127.N. S. McIntyre, A. V. Auwera-Mahieu, and J. Drowart, Trans. Faraday Soc. 64: 3006 (1968).Google Scholar
- 128.R. Scullman, private communication.Google Scholar
- 129.V. Raziunas, G. Macur, and S. Katz, J. Chem. Phys. 43: 1010 (1965).Google Scholar
- 130.A. Lagerqvist, H. Neuhaus, and R. Scullman, Z. Naturforsch. 20a: 751 (1965).Google Scholar
- 131.A. Lagerqvist and R. Scullman, Arkiv Fysik 32: 479 (1966).Google Scholar
- 132.J. H. Norman, H. G. Staley, and W. E. Bell, J. Phys. Chem. 68: 662 (1964).Google Scholar
- 133.M. Ackerman, F. E. Stafford, and G. Verhaegen, J. Chem. Phys. 36: 1560 (1962).Google Scholar
- 134.C. Malmberg, R. Scullman, and P. Nylén, Arkiv Fysik 39: 495 (1969).Google Scholar
- 135.J. H. Norman, H. G. Staley, and W. E. Bell, J. Phys. Chem. 69: 1373 (1965).Google Scholar
- 136.A. Gatterer, J. Junkes, E. W. Salpeter, and B. Rosen,;%Jolecular Spectra of Metallic Oxides, Specola Vaticana, Città del Vaticano (1957).Google Scholar
- 137.K. Jansson, R. Scullman, and B. Yttermo, Chem. Phys. Letters 4: 188 (1969).Google Scholar
- 138.J. H. Norman, H. G. Staley, and W. E. Bell, J. Chem. Phys. 42: 1123 (1965).Google Scholar
- 139.R. Scullman, Arkiv Fysik 28: 255 (1964).Google Scholar
- 140.V. A. Loginov, Opt. Spectry. (USSR) 20: 88 (1966).Google Scholar
- 141.R. Scullman and B. Yttermo, Arkiv Fysik 33: 231 (1966).Google Scholar
- 142.M. A. Catalan, F. Rohrlich, and A. G. Shenstone, Proc. Roy. Soc. London A221: 421 (1954).Google Scholar
- 143.R. F. Barrow, private communication.Google Scholar
- 144.C. B. Alcock and G. W. Hooper, Proc. Roy. Soc. London A254: 551 (1960).Google Scholar
- H. Schäfer and A. Tebben, Z. Anorg. Allgem. Chem. 304: 317 (1960).Google Scholar
- 146.A. Büchler and J. B. Berkowitz-Mattuck, in: “Advances in High Temperature Chemistry” ( L. Eyring, ed.), Academic Press, New York (1967).Google Scholar
- 147.A. Büchler, J. L. Stauffer, and W. Klemperer, J. Chem. Phys. 40: 3471 (1964).Google Scholar
- 148.J. W. Hastie, R. H. Hauge, and J. L. Margrave, High Temp. Sci. 1: 76 (1969).Google Scholar
- 149.J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Soc. D. 1969: 1452.Google Scholar
- 150.J. W. Hastie, R. H. Hauge, and J. L. Margrave, J. Chem. Phys. 51: 2648 (1969).Google Scholar
- 151.D. E. Milligan, M. E. Jacose, and J. D. McKinley, J. Chem. Phys. 42: 902 (1965).Google Scholar
- 152.K. R. Thompson and K. D. Carlson, J. Chem. Phys. 49: 4379 (1968).Google Scholar
- 153.A. Trutia and M. Musa, Spectrochim. Acta 23: 1165 (1967).Google Scholar
- 154.D. M. Gruen and C. W. DeKock, J. Chem. Phys. 43: 3395 (1965).Google Scholar
- 155.C. W. DeKock and D. M. Gruen, J. Chem. Phys. 49: 4521 (1968).Google Scholar
- 156.K. F. Zmbov and J. L. Margrave, J. Inorg. Nucl. Chem. 29: 673 (1967).Google Scholar
- 157.R. C. Schoonmaker, A. H. Friedman, and R. F. Porter, J. Chem. Phys. 31: 1586 (1959).Google Scholar
- 158.N. W. Gregory and R. O. Macharen, J. Phys. Chem. 59: 110 (1955).Google Scholar
- 159.W. E. Bell, U. Merten, and M. Tagami, J. Phys. Chem. 65: 510 (1961).Google Scholar
- 160.H. Schäfer, U. Wiese, K. Rinke, and K. Brendel Angew. Chem. 6: 253 (1967).Google Scholar
- 161.F. A. Cotton and T. E. Haas, Inorg. Chern. 3: 10 (1964).Google Scholar
- 162.W. E. Bell, M. C. Garrison, and U. Merten, J. Phys. Chem. 65: 517 (1961).Google Scholar
- 163.V. S. Rao and P. Kusch, J. Chem. Phys. 34: 832 (1961).Google Scholar
- 164.J. A. Plambeck, J. Chem. Eng. Data 12: 77 (1967).Google Scholar
- 165.H. A. Laitinen and C. H. Liu, J. Am. Chem. Soc. 80: 1015 (1958).Google Scholar
- 166.H. A. Laitinen and J. W. Pankey, J. Am. Chem. Soc. 81: 1053 (1959).Google Scholar
- 167.H. A. Laitinen and J. A. Plambeck, J. Am. Chem. Soc. 87: 1202 (1965).Google Scholar
- 168.S. N. Flengas and T. R. Ingraham, J. Electrochem. Soc. 106: 714 (1959).Google Scholar
- 169.H. E. Bartlett and K. E. Johnson, J. Electrochem. Soc. 114: 457 (1967).Google Scholar
- 170.K. E. Johnson and H. A. Laitinen, J. Electrochem. Soc. 110: 314 (1963).Google Scholar
- 171.W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 103: 8 (1956).Google Scholar
- 172.W. J. Hamer, M. S. Malmberg, and B. Rubin, J. Electrochem. Soc. 112: 750 (1965).Google Scholar
- 173.G. W. Mellors and S. Senderoff, J. Electrochem. Soc. 112: 642 (1965).Google Scholar
- 174.S. V. Winbush, E. Griswold, and J. Kleinberg, J. Am. Chem. Soc. 83: 3197 (1961).Google Scholar
- 175.W. L. Magnuson, E. Griswold, and J. Kleinberg, Marg. Chem. 3: 88 (1964).Google Scholar
- 176.D. M. Gruen, J. Inorg. Nucl. Chem. 4: 74 (1957).Google Scholar
- 177.N. W. Silcox and H. M. Haendler, J. Phys. Chem. 64: 303 (1960).Google Scholar
- 178.G. Harrington and B. R. Sundheim, Ann. N. Y. Acad. Sci.79: 950 (1960).Google Scholar
- 179.S. Balt, Rec. Tray. Chim. des Pay-Bas 86: 1025 (1967).Google Scholar
- 180.N. Islam, Ph. D. thesis, New York Univ. (1968).Google Scholar
- 181.B. Zaslow and R. E. Rundle, J. Phys. Chem. 61: 490 (1957).Google Scholar
- 182.S. Balt, Mol. Phys. 14: 233 (1968).Google Scholar
- 183.A. M. A. Verwey and S. Balt, private communication.Google Scholar
- 184.D. M. Gruen and R. L. McBeth, Nature 194: 468 (1962).Google Scholar
- 185.D. M. Gruen and R. L. McBeth, Pure Appl. Chem. 6: 23 (1963).Google Scholar
- 186.H. A. Dye and D. M. Gruen, Inorg. Chem. 3: 836 (1964).Google Scholar
- 187.J. P. Young, U. S. At. Energy Comm. ORNL-P-403 (1964).Google Scholar
- 188.J. P. Young, Inorg. Chem. 8: 825 (1969).Google Scholar
- 189.A. D. Liehr and C. J. Ballhausen, J. Mol. Spectry. 2: 342 (1958).Google Scholar
- 190.D. M. Gruen, Nature 178: 1181 (1956).Google Scholar
- 191.I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 134: 1374 (1960).Google Scholar
- 192.I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 135: 94 (1960).Google Scholar
- 193.I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 139: 120 (1961).Google Scholar
- 194.I. V. Tananaev and B. F. Dzhurinskii, Dokl. Akad. Nauk SSSR 140: 374 (1961).Google Scholar
- 195.K. W. Fung and K. E. Johnson, Can. J. Chem. 47: 4699 (1969).Google Scholar
- 196.J. R. Dickinson and K. E. Johnson, J. Mol. Spectry. 36: 1 (1970).Google Scholar
- 197.K. E. Johnson and T. S. Piper, Disc. Faraday Soc. 32: 32 (1962).Google Scholar
- 198.J. A. Duffy, F. P. Glasser, and M. D. Ingram, J. Chem. Soc. (A) 1968: 551.Google Scholar
- 199.J. A. Duffy and M. D. Ingram, J. Chem. Soc. (A) 1969: 2398.Google Scholar
- 200.R. A. Bailey, M. El Guindy, and J. A. Walden, Inorg. Chem. 8: 2526 (1969).Google Scholar
- 201.J. P. Young and J. C. White, Anal. Chem. 32: 799 (1960).Google Scholar
- 202.B. R. Sundheim and M. Kukk, Disc. Faraday Soc. 32: 49 (1962).Google Scholar
- 203.M. Kukk, Ph. D. thesis, New York Univ. (1964).Google Scholar
- 204.H. C. Egghart, J. Phys. Chem. 73: 4014 (1969).Google Scholar
- 205.H. A. Dye and D. M. Gruen, Inorg. Chem. 4: 1173 (1965).Google Scholar
- 206.K. W. Fung and K. E. Johnson, Can. J. Chem. 48: 3635 (1970).Google Scholar
- 207.C. A. Angell and D. M. Gruen, J. Inorg. Nucl. Chem. 29: 2243 (1967).Google Scholar
- 208.H. A. Oye and D. M. Gruen, in: Selected Topics in High Temperature Chemistry, ( T. Forland, K. Grjotheim, K. Motzfeldt, and S. Urnes, eds.), University Press, Oslo (1966).Google Scholar
- 209.D. M. Gruen, in: Fused Salts(B. R. Sundheim, ed.), p. 322, McGraw-Hill, New York (1964).Google Scholar
- 210.J. R. Dickinson and K. E. Johnson J. Mol. Spectry. 33 :414 (1970). Google Scholar
- 211.D. K. Straub, R. S. Drago, and J. T. Donoghue Inorg. Chem. 1:848 (1962). Google Scholar
- 212.F. A. Cotton and J. G. Bergman J. Am. Chem. Soc. 86:2941 (1964). Google Scholar
- 213.R. E. Isbell, E. W. Wilson, Jr., and D. F. Smith J. Phys. Chem. 70:2493 (1966). Google Scholar
- 214.E. W. Wilson, private communication.Google Scholar
- 215.R. Stahl-Breda and W. Low Phys. Rev. 113:775 (1959). Google Scholar
- 216.C. Simo, E. Banks, and S. Holt Inorg. Chem. 8:1446 (1969). Google Scholar
- 217.J. P. Young, private communication.Google Scholar
- 218.R. Pappalordo Spectrochim. Acta 19:2093 (1963). Google Scholar
- 219.A. D. Liehr and C. J. Ballhausen J. Mol. Spectry. 4:190 (1960). Google Scholar
- 220.D. M. Gruen, private communication.Google Scholar
- 221.M. Goffman, Ph. D. thesis, Temple Univ. (1966).Google Scholar
- 222.J. G. Bergman, Jr., and F. A. Cotton, Inorg. Chem. 5: 1420 (1966).Google Scholar
- 223.D. M. Gruen and R. L. McBeth, J. Phys. Chem. 63: 393 (1959).Google Scholar
- 224.C. H. Liu, J. Hasson, and G. P. Smith, Inorg. Chem. 7: 2244 (1968).Google Scholar
- 225.J. R. Dickinson, Ph. D. thesis, Univ. of Sask. (1969).Google Scholar
- 226.T. R. Griffiths, Chem. Comm. 1967: 1222.Google Scholar
- 227.G. P. Smith, C. H. Liu, and T. R. Griffiths, J. Am. Chem. Soc. 86: 4796 (1964).Google Scholar
- 228.G. P. Smith and C. R. Boston, J. Chem. Phys. 43: 4051 (1965).Google Scholar
- 229.C. R. Boston and G. P. Smith, J. Am. Chem. Soc. 85: 1006 (1963).Google Scholar
- 230.G. P. Smith, C. R. Boston, and J. Brynestad, J. Chem. Phys. 45: 829 (1966).Google Scholar
- 231.C. R. Boston, J. Brynestad, and G. P. Smith, J. Chem. Phys.47: 3193 (1967).Google Scholar
- 232.J. Brynestad, C. R. Boston, and G. P. Smith, J. Chem. Phys. 47: 3179 (1967).Google Scholar
- 233.C. R. Boston and G. P. Smith, J. Phys. Chem. 62: 409 (1958).Google Scholar
- 234.B. R. Sundheim and G. Harrigton, J. Chem. Phys. 31: 700 (1959).Google Scholar
- 235.J. Brynestad, H. L. Yakel, and G. P. Smith, J. Chem. Phys. 45: 4652 (1966).Google Scholar
- 236.J. Brynestad and G. P. Smith, J. Chem. Phys. 47: 3190 (1967).Google Scholar
- 237.C. A. Angell and D. M. Gruen J. Phys. Chem. 70: 1601 (1966).Google Scholar
- 238.W. E. Smith, J. Brynestad, and G. P. Smith, J. Am. Chem. Soc. 89: 5983 (1967).Google Scholar
- 239.W. E. Smith, J. Brynestad, and G. P. Smith, J. Chem. Phys. 52: 3890 (1970).Google Scholar
- 240.G. P. Smith and S. Von Wimbush, J. Am. Chem. Soc.88: 2127 (1966).Google Scholar
- 241.C. R. Boston, C. H. Liu, and G. P. Smith, Inorg. Chem. 7: 1938 (1968).Google Scholar
- 242.C. K. Jorgensen, Acta Chem. Scand. 9: 1362 (1955).Google Scholar
- 243.G. P. Smith, in: Molten Salt Chemistry ( M. Blander, ed.), McGraw-Hill, New York (1964).Google Scholar
- 244.K. Knox, R. G. Shulman, and S. Sugano, Phys. Rev. 130: 512 (1963).Google Scholar
- 245.C. K. Jorgensen, Mol. Phys. 1: 410 (1958).Google Scholar
- 246.G. P. Smith and C. R. Boston, J. Chem. Phys. 46: 412 (1967).Google Scholar
- 247.J. Brynestad and G. P. Smith, J. Am. Chem. Soc. 92: 3198 (1970).Google Scholar
- 248.A. D. Liehr and C. J. Ballhausen, Ann. Phys. (New York) 6: 134 (1959).Google Scholar
- 249.W. Trzebiatowski and J. Mulak, Bull. Acad. Sci. Pol. 13: 759 (1965).Google Scholar
- 250.B. N. Figgis and J. Lewis, Prog. Inorg. Chem. 6: 37 (1964).Google Scholar
- 251.C. K. Jorgensen, Acta Chem. Scand. 10: 518 (1956).Google Scholar
- 252.C. K. Jorgensen, Mol. Phys. 2: 309 (1959).Google Scholar
- 253.J. R. Dickinson and K. E. Johnson, Mol. Phys. 19: 19 (1970).Google Scholar
- 254.R. B. Johannesen and G. A. Candela, Inorg. Chem. 2: 67 (1963).Google Scholar
- 255.E. von Blasius and W. Preetz, Z. Anorg. Allgem. Chem. 335: 1 (1965).Google Scholar
- 256.L. L. Larson and C. S. Garner, J. Am. Chem. Soc. 76: 2180 (1954).Google Scholar
- 257.P. B. Dorain, H. H. Patterson, and P. C. Jordon, J. Chem. Phys. 49: 3845 (1968).Google Scholar
- 258.P. C. Jordan, H. H. Patterson, and P. B. Dorain, J. Chem. Phys. 49: 3858 (1968).Google Scholar
- 259.C. K. Jorgensen, Acta Chem. Scand. 16: 793 (1962).Google Scholar
- 260.R. Dingle, J. Mol. Spectry. 18: 276 (1965).Google Scholar
- 261.F. B. Ogilvie and O. G. Holmes, Can. J. Chem. 44: 447 (1966).Google Scholar
- 262.J. R. Dickinson and K. E. Johnson, Can. J. Chem. 45: 1631 (1967).Google Scholar
- 263.J. R. Dickinson and K. E. Johnson, Can. J. Chem. 45: 2457 (1967).Google Scholar
- 264.J. Chatt, L. E. Orgel, and G. A. Gamlen, J. Chem. Soc.1958: 486.Google Scholar
- 265.C. K. Jorgensen, Acta Chem. Scand. 10: 500 (1956).Google Scholar
- 266.R. A. Bailey and J. A. McIntyre, Inorg. Chem. 5: 1824 (1966).Google Scholar
- 267.D. S. Martin and C. A. Lenhardt, Inorg. Chem. 3: 1368 (1964).Google Scholar
- 268.A. J. McCaffery, P. N. Schatz, and P. J. Stephens, J. Am. Chem. Soc. 90: 5730 (1968).Google Scholar
- 269.P. Day, M. J. Smith, and R. J. P. Williams, J. Chem. Soc. A 1968:668. Google Scholar
- 270.H. B. Gray, J. Chem. Ed. 41:2 (1964).Google Scholar
- 271.L. Sacconi, Pure Appl. Chem. 17: 95 (1968).Google Scholar
- 272.K. E. Johnson, Electrochim. Acta 11: 129 (1966).Google Scholar
- 273.C. K. Jorgensen, in: Halogen Chemistry, Vol. 1, p. 265, Academic Press, New York (1967).Google Scholar
- 274.B. N. Figgis and J. Lewis, in: Technique of Inorganic Chemistry ( H. B. Jonassen and A. Weissberger, eds.), Vol. IV, Wiley-Interscience, New York (1965).Google Scholar
- 275.L. F. Audrieth and J. Kleinberg, Nonaqueous Solvents, Wiley, New York (1958).Google Scholar
- 276.L. F. Audrieth, A. Long, and R. E. Edwards, J. Am. Chem. Soc. 58: 428 (1936).Google Scholar
- 277.K. E. Johnson and M. E. Stone, Can. J. Chem. 49: 3836 (1971).Google Scholar
- 278.G. Maki, J. Chem. Phys. 29: 162 (1958).Google Scholar
- 279.D. W. Smith, Inorg. Chim. Acta 5: 231 (1971).Google Scholar
- 280.S. Suzuki and K. Tanaka, Nippon Kinzoku Gakkaishi 34:461 (1970); Chem. Abstr. 73:30356v(1970).Google Scholar
- 281.A. J. Barnes and H. E. Hallam, Quart, Rev. 23: 392 (1969).Google Scholar
- 282.T. Folkman and J. A. Plambeck, Can. J. Chem. 50: 3911 (1972).Google Scholar
- 283.J. R. Dickinson and M. E. Stone, Can. J. Chem. 50: 2946 (1972).Google Scholar
- 284.K. W. Fung and K. E. Johnson, Inorg. Chem. 10: 1347 (1971).Google Scholar
Copyright information
© Springer Science+Business Media New York 1973