Abstract

The allo bile acids are the 5α-cholanoic acids, i.e., derivatives of cholanoic acid in which the hydrogen at C5 is alpha-oriented rather than beta-oriented as in the large number of naturally occurring bile acids. The sequence of numbering in the cholane nucleus is the same as in the normal series. The prefix allo (Greek allos, other) has been defined by Chemical Abstracts to designate the more stable of two geometrical isomers. The trans relationship of rings A and B existing in these derivatives is the more stable conformation [see Fieser and Fieser (1) for discussion of this matter]. The allo-acids presently known, in addition to the unsubstituted allocholanoic acid, are oxygenated at positions 3, 6, 7, and/or 12. Where the structure of the allo-acid is otherwise identical to a known 5β acid, the acid is frequently named by the trivial name of the 5β acid with the prefix allo; e.g., allocholic acid (t) (3α, 7α, 12α-trihydroxy-5α-cholanoic acid) is the 5α-derivative of cholic acid.

Fig. 1

Fig. 1

Keywords

Bile Acid Cholic Acid Chenodeoxycholic Acid Relative Retention Time Deoxycholic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. F. Fieser and M. Fieser, “Steroids,” Reinhold, New York (1959).Google Scholar
  2. 2.
    H. Wieland and F. J. Weil, Z. Physiol. Chem. 80, 287 (1912).Google Scholar
  3. 3.
    A. Windaus and K. Neukirchen, Ber. 52, 1915 (1919).Google Scholar
  4. 4.
    A. Stoll, A. Hofmann, and A. Helfenstein, Hely. Chim. Acta 18, 643 (1935).Google Scholar
  5. 5.
    A. Windaus and A. Bohne, Ann. 433, 278 (1923).Google Scholar
  6. 6.
    H. Wieland, E. Dane, and C. Martius, Z. Physiol. Chem. 215, 15 (1933).Google Scholar
  7. 7.
    L. Ruzicka, Hely. Chim. Acta 18, 68 (1935).Google Scholar
  8. 8.
    A. Windaus, Ann. 447, 233 (1926).Google Scholar
  9. 9.
    M. Mizuguchi, Proc. Japan Acad. 30, 209 (1954).Google Scholar
  10. 10.
    R. G. Curtis and H. Silberman, J. Chem. Soc. 1952, 1187.Google Scholar
  11. 11.
    J. Jacques, H. Kagan, and G. Ourisson, “Selected Constants. Optical Rotatory Power. Ia. Steroids” (S. Allard, ed.), Pergamon Press, Oxford (1965).Google Scholar
  12. 12.
    H. Wieland and E. Dane, Z. Physiol. Chem. 212, 41 (1932).Google Scholar
  13. 13.
    I. Ushizawa, S. Takani, and K. Yamasaki, Yonago Acta Medica 2, 50 (1957); cited in C. A. 51, 14679 (1957).Google Scholar
  14. 14.
    K. Ohta, Z. Physiol. Chem. 259, 53 (1939).Google Scholar
  15. 15.
    H. Isaka, Z. Physiol. Chem. 266, 117 (1940).Google Scholar
  16. 16.
    K. Yamasaki, J. Biochem. (Tokyo) 38, 93 (1951).Google Scholar
  17. 17.
    G. A. D. Haslewood and I. D. P. Wootton, Biochem. J. 63, 3p (1956).Google Scholar
  18. 18.
    I. G. Anderson, G. A. D. Haslewood, and I. D. P. Wootton, Biochem. J. 67, 323 (1957).PubMedGoogle Scholar
  19. 19.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 85, 236 (1962).PubMedGoogle Scholar
  20. 19a.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 81, 15p (1961).Google Scholar
  21. 20.
    G. A. D. Haslewood, Biochem. J. 78, 352 (1961).Google Scholar
  22. 21.
    G. A. D. Haslewood, in “The Biliary System” (W. Taylor, ed.), p. 106, F. A. Davis, Philadelphia (1965).Google Scholar
  23. 22.
    K. Amimoto, J. Biochem. (Tokyo) 59, 340 (1966).Google Scholar
  24. 23.
    G. A. D. Haslewood, Ann. N. Y. Acad. Sci. 90, 877 (1960).Google Scholar
  25. 24.
    T. Sasaki, J. Biochem. (Tokyo) 60, 56 (1966).Google Scholar
  26. 25.
    G. A. D. Haslewood, “Bile Salts,” Methuen and Co., London (1967).Google Scholar
  27. 26.
    A. R. Tammer, Biochem. J. 98, 25 (1966).Google Scholar
  28. 27.
    P. Eneroth, B. Gordon, and J. Sjövall, J. Lipid Res. 7, 524 (1966).PubMedGoogle Scholar
  29. 28.
    H. J. Karavolas, W. H. Elliott, S. L. Hsia, E. A. Doisy, Jr., J. T. Matschiner, S. A. Thayer, and E. A. Doisy, J. Biol. Chem. 240 (4), 1568 (1965).PubMedGoogle Scholar
  30. 29.
    H. J. Karavolas and W. H. Elliott, in “The Biliary System” (W. Taylor, ed.), p. 175, F. A. Davis, Philadelphia (1965).Google Scholar
  31. 30.
    B. W. Noll and W. H. Elliott, Fed. Proc. 26, 851 (1967).Google Scholar
  32. 31.
    T. Hoshita, S. Shefer, and E. H. Mosbach, J. Lipid Res. 9, 237 (1968).PubMedGoogle Scholar
  33. 32.
    S. Kishi, Z. Physiol. Chem. 238, 210 (1936).Google Scholar
  34. 33.
    K. Matumoto, J. Biochem. Japan 36, 183 (1944).Google Scholar
  35. 34.
    H. Danielsson, A. Kailner, and J. Sjövall, J. Biol. Chem. 238, 3846 (1963).Google Scholar
  36. 35.
    M. Yukawa, Hiroshima J. Med. Sci. 11, 167 (1962).Google Scholar
  37. 36.
    A. F. Hofmann and E. H. Mosbach, J. Biol. Chem. 239, 2813 (1964).PubMedGoogle Scholar
  38. 37.
    A. F. Hofmann, V. Bokkenheuser, R. L. Hirsch, and E. H. Mosbach, J. Lipid Res. 9, 244 (1968).PubMedGoogle Scholar
  39. 38.
    V. Bokkenheuser, T. Hoshita, and E. H. Mosbach, J. Lipid Res. 10, 421 (1969).PubMedGoogle Scholar
  40. 39.
    T. Hoshita, K. Amimoto, T. Nakagawa, and T. Kazuno, J. Blacken?. 61, 750 (1967).Google Scholar
  41. 40.
    S. A. Ziller, Jr., E. A. Doisy, Jr., and W. H. Elliott, J. Biol. Chem. 243 (20), 5280 (1968).PubMedGoogle Scholar
  42. 41.
    A. Kallner, Arkiv Kern. 26, 567 (1967).Google Scholar
  43. 42.
    E. Fernholz, Z. Physiol. Chem. 232, 202 (1935).Google Scholar
  44. 43.
    K. Amimoto, Hiroshima J. Med. Sci. 15, 225 (1966).PubMedGoogle Scholar
  45. 44.
    K. Okuda, M. G. Horning, and E. C. Horning, “Proc. 7th Intern. Congr. Biochem.,” Tokyo, Vol. IV, Abstracts, p. 721, Sci. Council Japan, Tokyo (1967).Google Scholar
  46. 45.
    A. Kallner, Acta Chem. Scand. 21, 315 (1967).PubMedGoogle Scholar
  47. 46.
    P. J. Thomas, S. L. Hsia, J. T. Matschiner, S. A. Thayer, W. H. Elliott, E. A. Doisy, Jr., and E. A. Doisy, J. Biol. Chem. 240, 1059 (1965).Google Scholar
  48. 47.
    A. Kallner, Opuscula Medica, Suppl. I V, 11 (1967).Google Scholar
  49. 48.
    A. Norman and J. Sjövall, J. Biol. Chem. 233, 872 (1958).PubMedGoogle Scholar
  50. 49.
    J. T. Matschiner, T. A. Mahowald, W. H. Elliott, E. A. Doisy, Jr., S. L. Hsia, and E. A. Doisy, J. Biol. Chem. 225, 771 (1957).PubMedGoogle Scholar
  51. 50.
    K. Amimoto, Hiroshima J. Med. Sci. 15, 213 (1966).PubMedGoogle Scholar
  52. 51.
    P. Eneroth, in “Lipid Chromatographic Analysis” (G. V. Marinetti, ed.), Vol. 2, p. 149, Marcel Dekker, New York (1969).Google Scholar
  53. 52.
    P. Eneroth, J. Lipid Res. 4, 11 (1963).PubMedGoogle Scholar
  54. 53.
    T. Sasaki, Hiroshima J. Med. Sci. 14, 85 (1965).PubMedGoogle Scholar
  55. 54.
    K. Takeda, T. Komeno, and K. Igarashi, Pharm. Bull. (Tokyo) 2, 352 (1954).Google Scholar
  56. 55.
    A. Kallner, Acta Chem. Scand. 21, 87 (1967).PubMedGoogle Scholar
  57. 56.
    A. Kallner, Arkiv Kern. 26, 553 (1967).Google Scholar
  58. 57.
    T. Masui, K. Amimoto, and T. Kazuno, J. Biochem. (Tokyo) 62, 495 (1967).Google Scholar
  59. 58.
    T. Hoshita, J. Biochem. 61, 440 (1967).PubMedGoogle Scholar
  60. 59.
    F. Hodosan and A. Pop-Gocan, Rev. Roumaine Chim. 9(8–9), 523 (1964); cited in C. A. 62, 14773 (1965).Google Scholar
  61. 60.
    W. H. Elliott, L. B. Walsh, M. M. Mui, M. A. Thorne, and C. M. Siegfried, J. Chromatog. 44, 452 (1969).Google Scholar
  62. 61.
    M. Makita and W. W. Wells, Anal. Biochem. 5, 523 (1963).PubMedGoogle Scholar
  63. 62.
    P. Eneroth and J. Sjövall, in “Methods in Enzymology” (S. P. Colowick and N. O. Kaplan, ed.), Vol. 15, p. 237, Academic Press, New York (1969).Google Scholar
  64. 63.
    K. Tsuda, Y. Sato, N. Ikekawa, S. Tanaka, H. Higashikuye, and R. Ohsawa, Chem. Pharm. Bull. 13, 720 (1965).Google Scholar
  65. 64.
    A. F. Hofmann and D. M. Small, Ann. Rev. Med. 18, 333 (1967).PubMedGoogle Scholar
  66. 65.
    T. Hoshita, T. Sasaki, and T. Kazuno, Steroids 5, 241 (1965).Google Scholar
  67. 66.
    A. Kallner, Acta Chem. Scand. 21, 322 (1967).PubMedGoogle Scholar
  68. 67.
    M. N. Mitra and W. H. Elliott, J. Org. Chem. 33, 175 (1968).PubMedGoogle Scholar
  69. 68.
    S. A. Ziller, Jr., M. N. Mitra, and W. H. Elliott, Chem. Ind. 1967, 999.Google Scholar
  70. 69.
    G. A. D. Haslewood and I. G. Anderson, Biochem. J. 93, 34 (1964).PubMedGoogle Scholar
  71. 70.
    T. Masui, J. Biochem. 54, 41 (1963).PubMedGoogle Scholar
  72. 71.
    M. N. Mitra and W. H. Elliott, J. Org. Chem. 33, 2814 (1968).Google Scholar
  73. 72.
    K. Bieman and J. Seibl, J. Am. Chem. Soc. 31, 3149 (1959).Google Scholar
  74. 73.
    V. I. Zaretskii, N. S. Wulfson, V. G. Zalkin, L. M. Kogan, N. E. Voishvillo, and I. V. Torgov, Tetrahedron 22, 1399 (1966).Google Scholar
  75. 74.
    H. Egger and G. Spiteller, Monatsh. Chem. Verwandte Tiele Anderer Wiss. 97, 579 (1966).Google Scholar
  76. 75.
    W. H. Elliott, in “Biochemical Applications of Mass Spectrometry,” Chapter 11, John Wiley, New York (1971).Google Scholar
  77. 76.
    J. Sjövall, in “Gas-Liquid Chromatography of Steroids,” Symposium Society of Endocrinol., Glasgow (1966) (J. K. Grant, ed.), p. 243, Cambridge Univ. Press, London (1967).Google Scholar
  78. 77.
    J. G. Allen, G. H. Thomas, C. J. W. Brooks, and B. A. Knights, Steroids 13, 133 (1969).PubMedGoogle Scholar
  79. 78.
    H. Budzikiewicz and C. Djerassi, J. Am. Chem. Soc. 84, 1430 (1962).Google Scholar
  80. 79.
    I. G. Anderson and G. A. D. Haslewood, Biochem. J. 74, 37p (1960).Google Scholar
  81. 80.
    O. Wintersteiner and M. Moore, J. Am. Chem. Soc. 65, 1503 (1943).Google Scholar
  82. 81.
    Y. M. Y. Haddad, H. B. Henbest, J. Husbands, and T. R. B. Mitchell, Proc. Chem. Soc. 1964, 361.Google Scholar
  83. 82.
    P. A. Browne and D. N. Kirk, J. Chem. Soc. C 1969, 1653.Google Scholar
  84. 83.
    B. Riegel and A. V. McIntosh, Jr, J. Am. Chem. Soc. 66, 1099 (1944).Google Scholar
  85. 84.
    D. Chakravarti, R. N. Chakravarti, and M. N. Mitra, Nature 193, 1071 (1962).PubMedGoogle Scholar
  86. 85.
    M. N. Mitra and W. H. Elliott, J. Org. Chem. 34, 2170 (1969).Google Scholar
  87. 86.
    R. Mozingo, in “Organic Syntheses,” Coll. Vol. 111, p. 181, John Wiley, New York (1955).Google Scholar
  88. 87.
    H. H. Inhoffen, G. Stoeck, G. Kolling, and U. Stoeck, Ann. 568, 52 (1950).Google Scholar
  89. T. Goto, Proc. Japan Acad. 31 466 (1955); cited in C A. 50 11357 (1956).Google Scholar
  90. 89.
    F. Nakada, R. Oshio, S. Sasaki, H. Yamasaki, N. Yamaga, and K. Yamasaki, J. Biochem. (Tokyo) 64, 495 (1968).Google Scholar
  91. 90.
    P. Ziegler, Can. J. Chem. 34, 1528 (1956).Google Scholar
  92. 91.
    S. A. Ziller, Jr., “Metabolism of 5n–Cholestan–3,3–01–14C in the Hyperthyroid Rat,” Ph.D. dissertation, p. 121, St. Louis University (1967).Google Scholar
  93. 92.
    A. C. Maehly, ed., “Biochemical Preparations,” Vol. 11, p. 58, John Wiley, New York (1966).Google Scholar
  94. 93.
    G. Lehmann, J. Tepper, and G. Hilgetag, Biochem. Z. 340(1), 75 (1964); cited in C. A. 61, 10916 (1964).Google Scholar
  95. 94.
    J. Kawanami, Bull. Chem. Soc. Japan 34, 671 (1961); cited in C. A. 56, 1 1662a (1962).Google Scholar
  96. 95.
    A. Corbellini, G. Nathanson, V. Gurdjan, and O. Cerri, Rend. Ist. Lombardo Sci. Pt. 1, 91, 147 (1957); cited in C. A. 52, 11878a (1958).Google Scholar
  97. 96.
    A. Corbellini and G. Nathanson, Gazz. Chem. Ital. 86, 1240 (1956); cited in C. A. 53, 2280f (1959).Google Scholar
  98. 97.
    P. Ziegler, Can. J. Chem. 37, 1004 (1959).Google Scholar
  99. 98.
    M. Ogura and K. Yamasaki, Steroids 9, 607 (1967).PubMedGoogle Scholar
  100. 99.
    I. Ushizawa, Yonago Igaku Zasshi 11, 14 (1960); cited in C. A. 55, 6534 (1961).Google Scholar
  101. 100.
    W. M. Hoehn, J. Linsk, and R. B. Moffett, J. Am. Chem. Soc. 68, 1855 (1946).PubMedGoogle Scholar
  102. 101.
    A. F. Hofmann, Acta Chem. Scand. 17, 173 (1963).Google Scholar
  103. 102.
    A. Norman, Arkiv Kem. 8, 331 (1955).Google Scholar
  104. 103.
    R. Schoenheimer, D. Rittenberg, and M. Graff, J. Biol. Chem. 111, 163 (1935).Google Scholar
  105. 104.
    R. Schoenheimer, D. Rittenberg, and M. Graff, J. Biol. Chem. 111, 183 (1935).Google Scholar
  106. 105.
    R. S. Rosenfeld and T. A. Webster, Biochem. J. 37, 513 (1943).Google Scholar
  107. 106.
    G. G. Baker and D. M. Greenberg, Cancer Res. 9, 701 (1949).PubMedGoogle Scholar
  108. 107.
    H. S. Anker and K. Bloch, J. Biol. Chem. 178, 971 (1949).PubMedGoogle Scholar
  109. 108.
    W. M. Stokes, W. A. Fish, and F. C. Hickey, J. Biol. Chem. 213, 325 (1955).PubMedGoogle Scholar
  110. 109.
    H. Werbin, I. L. Chaikoff, and M. R. Imada, J. Biol. Chem. 237, 2072 (1962).PubMedGoogle Scholar
  111. 110.
    H. Werbin, I. L. Chaikoff, and B. P. Phillips, Biochem. 3, 1558 (1964).Google Scholar
  112. 111.
    R. S. Rosenfeld and I. Paul, Fed. Proc. 24, 661 (1965).Google Scholar
  113. 112.
    R. S. Rosenfeld, B. Zumoff, and L. Hellman, J. Lipid Res. 8, 16 (1967).PubMedGoogle Scholar
  114. 113.
    K. Yamasaki, F. Noda, and K. Shimizu, J. Biochem. 46, 747 (1959).Google Scholar
  115. 114.
    F. M. Harold, S. Abraham, and I. L. Chaikoff, J. Biol. Chem. 221, 435 (1956).PubMedGoogle Scholar
  116. 115.
    D. D. Chapman and I. L. Chaikoff, J. Biol. Chem. 234, 273 (1959).PubMedGoogle Scholar
  117. 116.
    E. G. Tombropoulos, H. Werbin, and I. L. Chaikoff, Proc. Soc. E.rptl. Biol. Med. 110, 331 (1962).Google Scholar
  118. 117.
    S. Shefer, S. Milch, and E. H. Mosbach, J. Biol. Chem. 239, 1731 (1964).PubMedGoogle Scholar
  119. 118.
    S. Shefer, S. Milch, and E. H. Mosbach, J. Lipid Res. 6, 33 (1965).PubMedGoogle Scholar
  120. 119.
    S. Shefer, S. Hauser, and E. H. Mosbach, J. Biol. Chem. 241, 946 (1966).PubMedGoogle Scholar
  121. 120.
    S. Shefer, S. Hauser, and E. H. Mosbach, J. Lipid Res. 7, 763 (1966).PubMedGoogle Scholar
  122. 121.
    H. J. Karavolas and W. H. Elliott, Fed. Proc. 22, 591 (1963).Google Scholar
  123. 122.
    S. A. Ziller, Jr., and W. H. Elliott, Fed. Proc. 25, 221 (1966).Google Scholar
  124. 123.
    A. F. Hofmann, E. H. Mosbach, and C. C. Sweeley, Biochem. Biophys. Acta 176, 204 (1969).PubMedGoogle Scholar
  125. 124.
    F. M. Harold, D. D. Chapman, and I. L. Chaikoff, J. Biol. Chem. 224, 609 (1957).PubMedGoogle Scholar
  126. 125.
    W. H. Elliott and S. A. Ziller, Jr., Fed. Proc. 27, 821 (1968).Google Scholar
  127. 126.
    B. W. Noll and W. H. Elliott, Fed. Proc. 28, 884 (1969).Google Scholar
  128. 127.
    S. Shefer, S. Hauser, and E. H. Mosbach, J. Lipid Res. 9, 328 (1968).PubMedGoogle Scholar
  129. 128.
    J. Björkhem, Eur. J. Biochem. 8, 345 (1969).PubMedGoogle Scholar
  130. 129.
    O. Berséus, H. Danielsson, and A. Kallner, J. Biol. Chem. 240, 2396 (1965).PubMedGoogle Scholar
  131. 130.
    K. Einarsson, Eur. J. Biochem. 6, 299 (1968).PubMedGoogle Scholar
  132. 131.
    B. W. Noll and W. H. Elliott, to be published.Google Scholar
  133. 132.
    K. A. Mitropoulos and N. B. Myant, Biochem. J. 103, 472 (1967).PubMedGoogle Scholar
  134. 133.
    T. Hoshita, Steroids 3, 523 (1964).Google Scholar
  135. 134.
    T. Hoshita, J. Biochem. (Tokyo) 52, 125 (1962).Google Scholar
  136. 135.
    T. Hoshita, J. Biochem. (Tokyo) 61, 633 (1967).Google Scholar
  137. 136.
    T. Masui, Y. Hijikato, and T. Kazuno, J. Biochem. (Tokyo) 62, 279 (1967).Google Scholar
  138. 137.
    S. Kikuchi, Y. Imai, Sukuoki-Ziro, T. Matsuo, and S. Noguchi, J. Pharmacol. Exp. Therap. 159, 399 (1968).Google Scholar
  139. 138.
    T. A. Mahowald, J. T. Matschiner, S. L. Hsia, R. Richter, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 225, 781 (1957).PubMedGoogle Scholar
  140. 139.
    T. A. Mahowald, M. W. Yin, J. T. Matschiner, S. L. Hsia, E. A. Doisy, Jr., W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 230, 581 (1958).PubMedGoogle Scholar
  141. 140.
    P. J. Thomas, S. L. Hsia, J. T. Matschiner, E. A. Doisy, Jr., W. H. Elliott, S. A. Thayer, and E. A. Doisy, J. Biol. Chem. 239, 102 (1964).Google Scholar
  142. 141.
    M. Shimao, Yonago Igaku Zasshi 15, 35 (1964); cited in C. A. 62, 7014 (1965).Google Scholar
  143. 142.
    A. A. Kandutsch, J. Lipid Res. 4, 179 (1963).Google Scholar
  144. 143.
    A. V. Chobanian, J. Clin. Invest. 47, 595 (1968).Google Scholar
  145. 144.
    O. Dalmer, F. Von Werder, H. Honigmann, and K. Heyns, Ber. 68, 1814 (1935).Google Scholar
  146. 145.
    I. Ushizawa, I. Yamane, and K. Yamasaki, Proc. Japan Acad. 33, 159 (1957); cited in C. A. 52, 10127 (1958).Google Scholar
  147. 146.
    L. Ruzicka, M. Oberlin, H. Wirz, and S. Meyer, Hely. Chim. Acta 20, 1283 (1937).Google Scholar
  148. 147.
    A. Stoll and J. Renz, Hely. Chim. Acta 24, 1380 (1941).Google Scholar
  149. 148.
    E. Fernholz and P. N. Chakravorty, Ber. 67, 2021 (1934).Google Scholar
  150. 149.
    O. Stange, Z. Physiol. Chem. 220, 34 (1933).Google Scholar
  151. 150.
    F. Hodosan, A. Pop-Gocan, and N. Serban, Rev. Roumaine Chim. 10 (1), 7 (1965); cited in C. A. 63, 10013e (1965).Google Scholar
  152. 151.
    R. Justoni and R. Pessina, I! Farmaco (Pavio), Ed. Sci. 11, 72 (1956); cited in C. A. 50, I5562a (1956).Google Scholar
  153. 152.
    A. Schubert and C. Damker, J. Prakt. Chem. 4, 260 (1957).Google Scholar
  154. 153.
    J. Kawanami, Bull. Chem. Soc. Japan 34, 509 (1961); cited in C. A. 56, 7389g (1962).Google Scholar
  155. 154.
    G. A. D. Haslewood, Biochem. J. 70, 551 (1958).Google Scholar
  156. 155.
    K. Matumoto, J. Biochem. (Tokyo) 36, 173 (1944).Google Scholar
  157. 156.
    M. Tukamoto, Z. Physiol. Chem. 260, 211 (1939).Google Scholar
  158. 157.
    K. Sasaki and T. Mochizuki, J. Biochem. (Japan) 40, 317 (1953).Google Scholar
  159. 158.
    T. F. Gallagher and J. R. Xenos, J. Biol. Chem. 165, 365 (1946).PubMedGoogle Scholar
  160. 159.
    J. Hattori and N. Yamada, J. Pharm. Soc. Japan 61, 466 (1941).Google Scholar
  161. 160.
    K. Takeda and K. Igarashi, J. Biochem. Japan 46, 1313 (1959).Google Scholar
  162. 161.
    R. L. Ratliff, J. T. Matschiner, E. A. Doisy, Jr., S. L. Hsia, S. A. Thayer, W. H. Elliott, and E. A. Doisy, J. Biol. Chem. 236, 685 (1961).Google Scholar
  163. 162.
    W. Dirscherl, Z. Physiol. Chem. 237, 268 (1935).Google Scholar
  164. 163.
    Z. Hattori, J. Pharm. Soc. Japan 59, 32 (1939); cited in C. A. 33, 3800 (1939); see also J. Pharm. Soc. Japan 59, 416 (1939); cited in C. A. 33, 8622 (1939).Google Scholar
  165. 164.
    W. Klyne, “The Chemistry of the Steroids,” p. 55, Methuen and Co., Barnes and Noble, New York (1965).Google Scholar
  166. 165.
    T. Usui, R. Oshio, M. Kawamoto, and K. Yamasaki, Yonago Acta Medica 10, 252 (1966).PubMedGoogle Scholar
  167. 166.
    G. Waller, H. Theorell, and J. Sjövall, Arch. Biochem. Biophys. 111, 671 (1965).PubMedGoogle Scholar
  168. 167.
    H. Theorell, S. Taniguchi, A. A. Keson, and L. Skursky, Biochim. Biophys. Res. Com. 24, 603 (1966).Google Scholar
  169. 168.
    T. Hoshita and T. Kazuno, in “Advances in Lipid Research” (R. Paoletti and D. Kritchevsky, eds.), Vol. 6, p. 207, Academic Press, New York (1968).Google Scholar
  170. 169.
    H. Budzikiewicz, C. Djerassi, and D. H. Williams, “Mass Spectrometry of Organic Compounds,” p. 8, Holden-Day, San Francisco (1967).Google Scholar
  171. 170.
    P. A. Roberts and W. H. Elliott, unpublished observations.Google Scholar
  172. 171.
    M. M. Mui and W. H. Elliott, J. Biol. Chem. 246, 302 (1971).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1971

Authors and Affiliations

  • William H. Elliott
    • 1
  1. 1.Department of BiochemistrySaint Louis UniversitySt. LouisUSA

Personalised recommendations