Nonadiabatic Processes in Molecular Collisions

  • John C. Tully
Part of the Modern Theoretical Chemistry book series (MTC, volume 2)

Abstract

Substantial effort has been directed toward developing methods for describing molecular collision processes that are electronically adiabatic, i.e., for which it can be assumed that nuclear motion evolves on a single potential energy hypersurface. A number of recent reviews are devoted to this subject.(1–8) Considerably less attention has been paid to processes that are nonadiabatic,i.e., that involve electronic transitions between potential energy surfaces. This is in spite of the fact that nonadiabatic behavior is both common and important, even in thermal energy collisions.

Keywords

Potential Energy Surface Nuclear Motion Molecular Collision Semiclassical Theory Adiabatic Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Rapp and T. Kassal. The theory of vibrational energy transfer between simple molecules in nonreactive collisions, Chem. Rev. 69, 61–102 (1969).CrossRefGoogle Scholar
  2. 2.
    R. J. Cross, Jr., in: Molecular Beams and Reaction Kinetics (Ch. Shlier, ed.), pp. 50–61, Academic Press, Inc., New York (1970).Google Scholar
  3. 3.
    D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).Google Scholar
  4. 4.
    R. D. Levine, in: MTP International Review of Science, Physical Chemistry (W. Byers-Brown, ed.), Vol. I, pp. 229–266, University Park Press, Baltimore (1972).Google Scholar
  5. 5.
    D. Secrest, Theory of rotational and vibrational energy transfer in molecules, Annu. Rev. Phys. Chem. 24, 379–406 (1973).CrossRefGoogle Scholar
  6. 6.
    T. F. George and J. Ross, Quantum dynamical theory of molecular collisions, Annu. Rev. Phys. Chem. 24, 263–300 (1973).CrossRefGoogle Scholar
  7. 7.
    J. C. Polanyi and J. L. Schreiber, in: Kinetics of Gas Reactions (H. Eyring, W. Jost, and D. Henderson, eds.), Chap. 9, Academic Press, Inc., New York (1974).Google Scholar
  8. 8.
    D. A. Micha, Quantum theory of reactive molecular collisions, Adv. Chem. Phys. 30, 221–260 (1975).Google Scholar
  9. 9.
    E. E. Nikitin, in: Chemische Elementarprozesse ( H. Hartmann, ed.), pp. 43–77, Springer-Verlag, Berlin (1968).CrossRefGoogle Scholar
  10. 10.
    T. Watanabe, in: Advances in Chemistry. Radiation Chemistry II ( E. J. Hart, ed.), pp. 176–193, American Chemical Society, Wahington, D.C. (1968).CrossRefGoogle Scholar
  11. 11.
    F. T. Smith, Elastic and inelastic atom-atom scattering, Lect. Theor. Phys. XIC, 95–117 (1969).Google Scholar
  12. 12.
    J. Callaway, Inelastic atom-atom collisions, Lect. Theor. Phys. XIC, 119–137 (1969).Google Scholar
  13. 13.
    E. Bauer, in: Kinetic Processes in Gases and Plasmas ( R. A. Hochstim, ed.), pp. 381–429, Academic Press, Inc., New York (1969).CrossRefGoogle Scholar
  14. 14.
    R. S. Berry, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 193–228, Academic Press, Inc., New York, (1970).Google Scholar
  15. 15.
    R. S. Berry, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 229–248, Academic Press, Inc., New York, (1970).Google Scholar
  16. 16.
    N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions, Oxford University Press, London (1965).Google Scholar
  17. 17.
    H. S. W. Massey, Electronic and Ionic Impact Phenomena,Vol. III, Oxford University Press, London (1971), Chap. 18.Google Scholar
  18. 18.
    R. A. Mapelton, The Theory of Charge Exchange, John Wiley and Sons, Inc. ( Interscience Division ), New York (1972).Google Scholar
  19. 19.
    E. W. Thomas, Excitation in Heavy Particle Collisions, John Wiley and Sons, Inc. ( Interscience Division ), New York (1972).Google Scholar
  20. 20.
    E. E. Muschlitz, Collisions of electronically excited atoms and molecules, Adv. Chem. Phys. 10, 171–194 (1966).CrossRefGoogle Scholar
  21. 21.
    B. A. Thrush, Gas reactions yielding electronically excited species, Annu. Rev. Phys. Chem. 19, 371–388 (1968).CrossRefGoogle Scholar
  22. 22.
    F. R. Gilmore, E. Bauer, and J. W. McGowan, A review of atomic and molecular excitation mechanics in non-equilibrium gases up to 20,000°K, J. Quant. Spectrosc. Radiat. Transfer 9, 157–183 (1969).CrossRefGoogle Scholar
  23. 23.
    R. B. Cundall, in: Transfer and Storage of Energy by Molecules (G. M. Burnett and A. M. North, eds.), Vol. I, pp. 1–63, John Wiley and Sons, Inc. (Interscience Division), New York (1969).Google Scholar
  24. 24.
    A. B. Callear and J. D. Lambert, in: Comprehensive Chemical Kinetics (C. H. Bamford and C. F. H. Tipper, eds.), Vol. 3, pp. 182–273, Elsevier Publishing Company, Amsterdam (1969).Google Scholar
  25. 25.
    I. W. M. Smith, in: The Role of the Excited State in Chemical Physics (J. W. McGowan, ed.), John Wiley and Sons, Inc. ( Interscience Division ), New York (1973).Google Scholar
  26. 26.
    R. J. Donovan and D. Husain, Recent advances in the chemistry of electronically excited atoms, Chem. Rev. 70, 489–516 (1970).CrossRefGoogle Scholar
  27. 27.
    J. I. Steinfeld, Quenching of fluorescence in small molecules, Acc. Chem. Res. 3, 313–320 (1970).CrossRefGoogle Scholar
  28. 28.
    R. F. Vasil’ev, Chemiluminescence excitation mechanisms, Russ. Chem. Rev. 39, 529–544 (1970).CrossRefGoogle Scholar
  29. 29.
    T. Carrington and J. C. Polanyi, in: MTPlnternational Review of Science, Physical Chemistry (J. C. Polanyi, ed.), Vol. 9, pp. 135–171, University Park Press, Baltimore (1972).Google Scholar
  30. 30.
    D. H. Stedman and D. W. Setzer, Chemical applications of metastable rare gas atoms, Prog. React. Kinet. 6, 193–238 (1972).Google Scholar
  31. 31.
    M. Born and J. R. Oppenheimer, Zur Quantentheorie der Molekeln, Ann. der Phys. 84, 457–484 (1927).CrossRefGoogle Scholar
  32. 32.
    A. Messiah, Quantum Mechanics, Vol. II, Chap. 18, John Wiley and Sons, Inc., New York (1962).Google Scholar
  33. 33.
    W. H. Miller, The semiclassical nature of atomic and molecular collisions, Acc. Chem. Res. 4, 161–167 (1971).CrossRefGoogle Scholar
  34. 34.
    E. Bauer, E. R. Fisher, and F. R. Gilmore, De-excitation of electronically excited sodium by nitrogen, J. Chem. Phys. 51, 4173–4181 (1969).CrossRefGoogle Scholar
  35. 35.
    J. C. Tully and R. K. Preston, Trajectory surface hopping approach to nonadiabatic molecular collisions, J. Chem. Phys. 55, 562–572 (1971).CrossRefGoogle Scholar
  36. 36.
    W. H. Miller and T. F. George, Semiclassical theory of electronic transitions in low energy atomic and molecular collisions involving several nuclear degrees of freedom, J. Chem. Phys. 56, 5637–5652 (1972).CrossRefGoogle Scholar
  37. 37.
    W. H. Miller, Classical limit quantum mechanics and the theory of molecular collisions, Adv. Chem. Phys. 25, 69–177 (1974).CrossRefGoogle Scholar
  38. 38.
    R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill Book Company, New York (1966).Google Scholar
  39. 39.
    M. L. Goldberger and K. M. Watson, Collision Theory, John Wiley and Sons, Inc., New York (1964).Google Scholar
  40. 40.
    J. R. Taylor, Scattering Theory. The Quantum Theory of Nonrelativistic Collisions, John Wiley and Sons, Inc., New York, (1972).Google Scholar
  41. 41.
    L. S. Rodberg and R. M. Thaler, Introduction to the Quantum Theory of Scattering, Academic Press, Inc., New York (1967).Google Scholar
  42. 42.
    H. Laue, Coupling between nuclear and electronic motion in diatomic molecules, J. Chem. Phys. 46, 3034–3040 (1967).CrossRefGoogle Scholar
  43. 43.
    W. Kolos, Adiabatic approximation and its accuracy, Adv. Quantum. Chem. 5, 99–133 (1970).CrossRefGoogle Scholar
  44. 44.
    J. C. Tully, Diatomics-in-Molecules potential energy surfaces. II. Nonadiabatic and spin-orbit interactions, J. Chem. Phys. 59, 5122–5134 (1973).CrossRefGoogle Scholar
  45. 45.
    N. F. Mott, On the theory of excitation by collisions with heavy particles, Proc. Cambridge Philos. Soc. 27, 553–560 (1931).CrossRefGoogle Scholar
  46. 46.
    J. von Neumann and E. P. Wigner, Über das Verhalten von Eigenwerten bei adiabatischen Prozessen, Phys. Z. 30, 467–470 (1929).Google Scholar
  47. 47.
    G. Herzberg and H. C. Longuet-Higgins, Intersection of potential energy surfaces in polyatomic molecules, Discuss. Faraday Soc. 35, 77–82 (1963).CrossRefGoogle Scholar
  48. 48.
    E. Teller, The crossing of potential surfaces, J. Phys. Chem. 41, 109–115 (1937).CrossRefGoogle Scholar
  49. 49.
    T. F. George, K. Morokuma, and Y.-W. Lin, Real and complex intersections between potential energy surfaces of the same symmetry in polyatomic systems, Chem. Phys. Lett. 30, 54–57 (1975).CrossRefGoogle Scholar
  50. 50.
    W. Lichten, Resonant charge exchange in atomic collisions, Phys. Rev., 131, 229–238 (1963).CrossRefGoogle Scholar
  51. 51.
    T. F. O’Malley, Diabetic state of molecules-Quasistationary electronic states, Adv. At. Mol. Phys. 7, 223–249 (1971).CrossRefGoogle Scholar
  52. 52.
    R. W. Numrich and D. G. Truhlar, Mixing of ionic and covalent configurations for NaH, KH and MgH+, J. Phys. Chem. 79, 2745–2766 (1975).CrossRefGoogle Scholar
  53. 53.
    F. T. Smith, Diabatic and adiabatic representations for atomic collision problems, Phys. Rev. 179, 111–123 (1969).CrossRefGoogle Scholar
  54. 54.
    M. Baer, Adiabatic and diabatic representations for atom-molecule collisions, Chem. Phys. Lett. 35, 112–118 (1975).CrossRefGoogle Scholar
  55. 55.
    T. Carrington, The geometry of intersecting potential surfaces, Acc. Chem. Res. 7, 20–25 (1974).CrossRefGoogle Scholar
  56. 56.
    R. K. Preston and J. C. Tully, Effects of surface crossing in chemical reactions: The H3 system, J. Chem. Phys. 54, 4297–4304 (1971).CrossRefGoogle Scholar
  57. 57.
    S. Chapman and R. K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar.-H2 system, J. Chem. Phys. 60, 650–659 (1974).CrossRefGoogle Scholar
  58. 58.
    H. S. W. Massey, Collisions between atoms and molecules at ordinary temperatures, Rep. Prog. Phys. 12, 248–269 (1949).CrossRefGoogle Scholar
  59. 59.
    H. F. Schaefer III, The Electronic Structure of Atoms and Molecules, Addison-Wesley Publishing Company, Inc., Reading, Mass. (1972).Google Scholar
  60. 60.
    J. N. Bardsley, Pseudopotentials in atomic and molecular physics, Case Stud. At. Phys. 4, 299–368 (1974).Google Scholar
  61. 61.
    A. C. Roach and M. S. Child, Electronic potential energy surfaces for the reaction K + NaCI-*KC1 + Na, Mol. Phys. 14, 1–15 (1968).CrossRefGoogle Scholar
  62. 62.
    C. F. Melius, W. A. Goddard III, and L. R. Kahn, Use of ab initio G1 effective potentials for calculations of molecular excited states, J. Chem. Phys. 56, 3342–3348 (1972).CrossRefGoogle Scholar
  63. 63.
    W. Moffitt, Atoms in molecules and crystals, Proc. R. Soc. London Ser. A 210, 245–268 (1951).CrossRefGoogle Scholar
  64. 64.
    G. G. Balint-Kurti and M. Karplus, Potential energy surfaces for simple chemical reactions: Li + F2- LiF + F, Chem. Phys. Lett. 11, 203–207 (1971).CrossRefGoogle Scholar
  65. 65.
    F. O. Ellison, A method of diatomics in molecules. I. General theory and application to H2O, J. Am. Chem. Soc. 85, 3540–3544 (1963).CrossRefGoogle Scholar
  66. 66.
    P. J. Kuntz and A. C. Roach, Ion-molecule reactions of rare gases with hydrogen, J. Chem. Soc. Faraday Trans. 2, 68, 259–280 (1972).CrossRefGoogle Scholar
  67. 67.
    J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).CrossRefGoogle Scholar
  68. 68.
    T. E. H. Walker and W. G. Richards, Molecular spin—orbit coupling constants. The role of core polarization, J. Chem. Phys. 52, 1311–1314 (1970).CrossRefGoogle Scholar
  69. 69.
    W. H. Moores and R. McWeeney, The calculation of spin—orbit splitting and g tensors for small molecules and radicals, Proc. R. Soc. London Ser. A 332, 365–384 (1973).CrossRefGoogle Scholar
  70. 70.
    F. H. Mies, Molecular theory of atomic collisions: Fine-structure transitions, Phys. Rev. A 7, 942–957 (1973).CrossRefGoogle Scholar
  71. 71.
    J. S. Cohen and B. Schneider, Ground and excited states of Nee and Net. I. Potential curves with and without spin—orbit coupling, J. Chem. Phys. 61, 3230–3239 (1974).CrossRefGoogle Scholar
  72. 72.
    J. C. Browne, Molecular wave functions: Calculation and use in atomic and molecular processes, Adv. At. Mol. Phy. 7, 47–95 (1971).CrossRefGoogle Scholar
  73. 73.
    W. R. Thorson, Asymptotic coriolis interactions in slow atomic collisions, J. Chem. Phys. 50, 1702–1704 (1969).CrossRefGoogle Scholar
  74. 74.
    V. Sidis, Simple expression for the off-diagonal matrix elements of the d/dR operator between exact electronic states of a diatomic molecule, J. Chem. Phys. 55, 5838–5839 (1971).CrossRefGoogle Scholar
  75. 75.
    W. R. Thorson, Theory of slow atomic collisions. I. Hz, J. Chem. Phys. 42, 3878–3891 (1965).CrossRefGoogle Scholar
  76. 76.
    S. B. Schneiderman and A. Russek, Velocity-dependent orbitals in proton-on-hydrogenatom collisions, Phys. Rev. 181, 311–321 (1969).CrossRefGoogle Scholar
  77. 77.
    D. R. Bates and D. Sprevak, Translation factor in basis functions used in perturbed stationary state approximation and capture in H+—H (IS) collisions, J. Phys. B 4, L47–51 (1971).CrossRefGoogle Scholar
  78. 78.
    C. F. Melius and W. A. Goddard III, The theoretical description of an asymmetric, nonresonant charge transfer process, Chem. Phys. Len. 15, 524–529 (1972).CrossRefGoogle Scholar
  79. 79.
    H. S. W. Massey and R. A. Smith, The passage of positive ions through gases, Proc. R. Soc. London A 142, 142–172 (1933).CrossRefGoogle Scholar
  80. 80.
    R. P. Marchi and F. T. Smith, Theory of elastic differential scattering in low-energy Hem—He collisions, Phys. Rev. 139, A1025–1038 (1965).CrossRefGoogle Scholar
  81. 81.
    E. E. Nikitin, Remarks on different theoretical approaches to the collisionally induced depolarization of atomic states, Comments At. Mol. Phys. 3, 7–14 (1971).Google Scholar
  82. 82.
    D. G. Truhlar, Multiple potential energy surfaces for reactions of species in degenerate electronic states, J. Chem. Phys. 56, 3189–3190 (1972).CrossRefGoogle Scholar
  83. 83.
    J. T. Muckerman and M. D. Newton, Comment on “multiple potential energy surfaces for reactions of species in degenerate electronic states” by D. G. Truhlar, J. Chem. Phys. 56, 3191–3192 (1972).CrossRefGoogle Scholar
  84. 84.
    J. C. Tully, Collisions of F (2P1,2) with H2, J. Chem. Phys. 60, 3042–3050 (1974).CrossRefGoogle Scholar
  85. 85.
    W. H. Miller, Theory of Penning ionization. I. Atoms, J. Chem. Phys. 52, 3563–3572 (1970).CrossRefGoogle Scholar
  86. 86.
    H. Nakamura, Theoretical considerations on Penning ionization processes, J. Phys. Soc. Jpn 26, 1473–1479 (1969).CrossRefGoogle Scholar
  87. 87.
    S. A. Evans, J. S. Cohen, and N. F. Lane, Quantum-mechanical calculation of cross sections for inelastic atom—atom collisions. I, Phys. Rev. A 4, 2235–2248 (1971).Google Scholar
  88. 88.
    L. Lenamon, J. C. Browne, and R. E. Olson, Theoretical low-energy inelastic-scattering cross sections for He (23S) + He (1 `S) He (23P) + He (1 S), Phys. Rev. A 8, 2380–2386 (1973).CrossRefGoogle Scholar
  89. 89.
    R. E. Olson, Low-energy theoretical inelastic-scattering differential cross sections for the process H++ He—*H++ He (23S), Phys. Rev. A 5, 2094–2103 (1972).CrossRefGoogle Scholar
  90. 90.
    F. H. Mies, Molecular theory of atomic collisions: Calculated cross sections for H+ + F (2P), Phys. Rev. A. 7, 957–967 (1973).Google Scholar
  91. 91.
    R. H. Reid, Transitions among the 3p2 P states of sodium induced by collisions with helium, J. Phys. B 6, 2018–2039 (1973).CrossRefGoogle Scholar
  92. 92.
    J. S. Cohen, S. A. Evans, and N. F. Lane, Quantum-mechanical calculation of cross sections for inelastic atom—atom collisions. II, Phys. Rev. A 4, 2248–2253 (1971).CrossRefGoogle Scholar
  93. 93.
    H. Nakamura, Theoretical studies of inelastic atomic collisions in a two-state model problem. Mol. Phys. 25, 577–602 (1973).CrossRefGoogle Scholar
  94. 94.
    H. G. Guerin, T. P. Tsien, B. C. Eu, and R. E. Olson, Comment on the accuracy of the uniform WKB theory of inelastic collisions, Phys. Rev. A 9, 995–998 (1974).CrossRefGoogle Scholar
  95. 95.
    J. B. Delos, Studies of the potential-curve-crossing problem. III, Phys. Rev. A9, 1626–1634 (1974).CrossRefGoogle Scholar
  96. 96.
    A. C. Allison, The numerical solution of coupled differential equations arising from the Schrödinger equation, J. Comput. Phys. 6, 378–391 (1970).CrossRefGoogle Scholar
  97. 97.
    W. A. Lester, Jr., and R. B. Bernstein, Computational procedure for the close-coupled rotational excitation problem, J. Chem. Phys. 48, 4896–4904 (1968).CrossRefGoogle Scholar
  98. 98.
    R. G. Gordon, Quantum scattering using piecewise analytic solutions, Methods Comput. Phys, 10, 81–110 (1971).Google Scholar
  99. 99.
    W. N. Sams and D. J. Kouri, Noniterative solutions of integral equations of scattering. II. Coupled channels, J. Chem. Phys. 51, 4815–4819 (1969).CrossRefGoogle Scholar
  100. 100.
    B. R. Johnson and D. Secrest, The solution of the nonrelativistic quantum scattering problem without exchange, J. Math. Phys. (N.Y.) 7, 2187 (1966).CrossRefGoogle Scholar
  101. 101.
    B. R. Johnson, The multichannel log-derivative method for scattering calculations, J. Comput. Phys. 13, 445–449 (1973).CrossRefGoogle Scholar
  102. 102.
    J. C. Light, Quantum theories of chemical kinetics, Adv. Chem. Phys. 19, 1–31 (1971).CrossRefGoogle Scholar
  103. 103.
    W. A. Lester, Jr., Calculation of cross sections for rotational excitation of diatomic molecules by heavy particle impact: Solution of close-coupled equations, Methods Comput. Phys. 10, 211–242 (1971).Google Scholar
  104. 104.
    W. A. Lester, Jr. and J. Schaefer, Rotational transitions in H2 by Li’ collisions; comparison with experiment, J. Chem. Phys. 60, 1672–1674 (1974).CrossRefGoogle Scholar
  105. 105.
    P. McGuire, Coupled-states approach for elastic and for rotationally and vibrationally inelastic atom-molecule collisions, J. Chem. Phys. 62, 525–534 (1975).CrossRefGoogle Scholar
  106. 106.
    R. A. Marcus, Analytical mechanics of chemical reactions. III. Natural collision coordinates, J. Chem. Phys. 49, 2610–2616 (1968).CrossRefGoogle Scholar
  107. 107.
    G. Wolken, Jr. and M. Karplus, Theoretical studies of H+H2 reactive scattering, J. Chem. Phys. 60, 351–367 (1974).CrossRefGoogle Scholar
  108. 108.
    J. C. Light, Quantum calculations in chemically reactive systems, Methods Comput. Phys. 10, 111–143 (1971).Google Scholar
  109. 109.
    B. R. Johnson and R. D. Levine, A new approach to non-adiabatic transitions in collision theory, Chem. Phys. Lett. 13, 168–171 (1972).CrossRefGoogle Scholar
  110. 110.
    H. Nakamura, Theory of electronically non-adiabatic chemical reactions: Quantum formulation of collinear reactions, Mol. Phys. 26, 673–685 (1973).CrossRefGoogle Scholar
  111. 111.
    Z. Top and M. Baer, Non-adiabatic transitions in chemical reaction. A quantum mechanical study, Chem. Phys. 10, 95–106 (1975).CrossRefGoogle Scholar
  112. 112.
    I. H. Zimmerman and T. F. George, Quantum resonance effects in electronic-to-vibrational energy transfer in molecular collisions, J. Chem. Phys. 61, 2468–2470 (1974).CrossRefGoogle Scholar
  113. 113.
    I. H. Zimmerman and T. F. George, Quantum mechanical study of electronic transitions in collinear atom-diatom collisions, Chem. Phys. 7, 323–335 (1975).CrossRefGoogle Scholar
  114. 114.
    O. H. Crawford, Calculation of chemical reaction rates by variational methods, J. Chem. Phys. 55, 2571–2574 (1971).CrossRefGoogle Scholar
  115. 115.
    W. H. Miller, Coupled equations and the minimum principle for collision of an atom and a diatomic molecule, including rearrangements, J. Chem. Phys. 50, 407–418(1969).CrossRefGoogle Scholar
  116. 116.
    R. Conn and H. Rabitz, Decomposition of K and T matrices for inelastic scattering using variational principles, J. Chem. Phys. 61, 600–608 (1974).CrossRefGoogle Scholar
  117. 117.
    J. H. Weare and E. Thiele, Variation procedure for multichannel scattering processes, Phys. Rev. 167, 11–13 (1968).CrossRefGoogle Scholar
  118. 118.
    R. G. Gordon and T.-N. Chiu, On a first-order electronic dipole-dipole mechanism for energy transfer in molecular collisions, J. Chem. Phys. 55, 1469–1471 (1971).CrossRefGoogle Scholar
  119. 119.
    R. E. Olson and F. T. Smith, Collision spectroscopy. IV. Semiclassical theory of inelastic scattering with applications to He + Ne, Phys. Rev. A 3, 1607–1617 (1971).CrossRefGoogle Scholar
  120. 120.
    M. Karplus, in: Molecular Beams and Reaction Kinetics ( Ch. Schlier, ed.), pp. 407–426, Academic Press, Inc., New York (1970).Google Scholar
  121. 121.
    B. H. Choi and K. T. Tang, Theory of distorted-wave Born approximation for reactive scattering of an atom and a diatomic molecule, J. Chem. Phys. 61, 5147–5157 (1974).CrossRefGoogle Scholar
  122. 122.
    P. Pechukas and J. C. Light, On the exponential form of time-displacement operators in quantum mechanics, J. Chem. Phys. 44, 3897–3912 (1966).CrossRefGoogle Scholar
  123. 123.
    R. D. Levine, Exponential approximations in collision theory, Mol. Phys. 22, 497–523 (1971).CrossRefGoogle Scholar
  124. 124.
    R. A. Marcus, On the analytical mechanics of chemical reactions. Quantum mechanics of linear collisions, J. Chem. Phys. 45, 4493–4499 (1966).CrossRefGoogle Scholar
  125. 125.
    B. C. Eu and J. Ross, Optical potential for a chemically reactive system, Discuss. Faraday Soc. 44, 39–45 (1967).CrossRefGoogle Scholar
  126. 126.
    C. A. Coulson and B. R. Gerber, A lower-bound property of adiabatic phase shifts, Mol. Phys. 14, 117–131 (1968).CrossRefGoogle Scholar
  127. 127.
    R. D. Levine, Variational corrections to decoupling approximations in molecular collision theory, J. Chem. Phys. 50, 1–6 (1969).CrossRefGoogle Scholar
  128. 128.
    D. A. Micha, Optical potentials in molecular collisions, J. Chem. Phys. 50, 722–726 (1969).CrossRefGoogle Scholar
  129. 129.
    R. D. Levine, B. R. Johnson, and R. B. Bernstein, Role of potential curve crossing in subexcitation molecular collisions, J. Chem. Phys. 50, 1694–1701 (1969).CrossRefGoogle Scholar
  130. 130.
    R. E. Roberts, Improved perturbation theory for inelastic encounters, J. Chem. Phys. 55, 100–104 (1971).CrossRefGoogle Scholar
  131. 131.
    R. B. Bernstein and K. H. Kramer, Sudden approximation applied to rotational excitation of molecules in atoms. II, J. Chem. Phys. 44, 4473–4485 (1966).CrossRefGoogle Scholar
  132. 132.
    R. J. Cross, Jr., Semiclassical theory of inelastic scattering: Diagonalization of the phase shift matrix, J. Chem. Phys. 49, 1753 (1968).CrossRefGoogle Scholar
  133. 133.
    M. D. Pattengill, C. F. Curtiss, and R. B. Bernstein, Molecular collisions. XIV. First-order approximation of the generalized phase shift treatment of rotational excitation: Atom-rigid rotor, J. Chem. Phys. 54, 2197–2207 (1971).CrossRefGoogle Scholar
  134. 134.
    M. Wartell and R. J. Cross, Jr., Semiclassical theory of vibrationally inelastic scattering in three dimensions, J. Chem. Phys. 55, 4983–4991 (1971).CrossRefGoogle Scholar
  135. 135.
    R. T. Pack, Relations between some exponential approximations in rotationally inelastic molecular collisions, Chem. Phys. Lett. 14, 393–395 (1972).CrossRefGoogle Scholar
  136. 136.
    D. A. Micha and M. Rotenberg, Collision energy dependence of angular distributions for vibrational excitation of H2 by He, Chem. Phys. Lett. 13, 289–291 (1972).CrossRefGoogle Scholar
  137. 137.
    H. Rabitz, Effective potentials in molecular collisions, J. Chem. Phys. 57, 1718–1725 (1972).CrossRefGoogle Scholar
  138. 138.
    G. Zarur and H. Rabitz, Rotationally inelastic scattering with effective potentials, J. Chem. Phys. 59, 943–951 (1973).CrossRefGoogle Scholar
  139. 139.
    R. A. White, A. Altenberger-Siczek, and J. C. Light, Optical potentials in time-dependent quantum theory, J. Chem. Phys. 59, 200–205 (1973).CrossRefGoogle Scholar
  140. 140.
    G. Zarur and H. Rabitz, Effective potential formulation of molecule-molecule collisions with application to H2–H2, J. Chem. Phys. 60, 2057–2078 (1974).CrossRefGoogle Scholar
  141. 141.
    P. McGuire and D. J. Kouri, Quantum mechanical close-coupling approach to molecular collisions. Jr-conserving coupled-states approximation, J. Chem. Phys. 60, 2488–2499 (1974).CrossRefGoogle Scholar
  142. 142.
    M. Tamir and M. Shapiro, The approximate conservation of P-helicity in rotational excitation: A new decoupling scheme, Chem. Phys. Lett. 31, 166–171 (1975).CrossRefGoogle Scholar
  143. 143.
    D. Secrest, Theory of angular momentum decoupling approximations for rotational transitions in scattering, J. Chem. Phys. 62, 710–719 (1975).CrossRefGoogle Scholar
  144. 144.
    D. A. Micha, Effective Hamiltonian methods for molecular collision, Adv. Quantum Chem. 8, 231–287 (1974).CrossRefGoogle Scholar
  145. 145.
    R. J. Cross, Jr., Semiclassical methods in inelastic scattering, J. Chem. Phys. 51, 5163–5170 (1969).CrossRefGoogle Scholar
  146. 146.
    D. R. Bates and D. S. F. Crothers, Semiclassical treatment of atomic collisions, Proc. R. Soc. London Ser. A 315, 465–478 (1970).CrossRefGoogle Scholar
  147. 147.
    J. B. Delos, W. R. Thorson, and S. Knudson, Semiclassical theory of inelastic collisions. I. Classical picture and semiclassical formulation, Phys. Rev. A 6, 709–720 (1972).CrossRefGoogle Scholar
  148. 148.
    J. B. Delos and W. R. Thorson, Semiclassical theory of inelastic collisions. II. Momentum-space formulation, Phys. Rev. A 6, 720–727 (1972).CrossRefGoogle Scholar
  149. 149.
    A. M. Wooley and S. E. Nielsen, On the limits of applicability of the classical trajectory equations in the two-state approximation, Chem. Phys. Lett. 21, 491–494 (1973).CrossRefGoogle Scholar
  150. 150.
    D. R. Bates and A. R. Holt, Impact parameter and semi-classical treatments of atomic collisions, Proc. R. Soc. London Ser. A 292, 168–179 (1966).CrossRefGoogle Scholar
  151. 151.
    A. M. Arthurs, The mathematical equivalence of the Born approximation and the method of impact parameters, Proc. Cambridge Philos. Soc. 57, 904–905 (1961).CrossRefGoogle Scholar
  152. 152.
    J. C. Y. Chen, C. J. Joachain, and K. M. Watson, Electronic transitions in slow collisions of atoms and molecules. IV, Phys. Rev. A 5, 1268–1285 (1972).Google Scholar
  153. 153.
    J. Callaway and E. Bauer, Inelastic collisions of slow atoms, Phys. Rev. 140, A1072–1084 (1965).CrossRefGoogle Scholar
  154. 154.
    L. Wilets and S. J. Wallace, Eikonal method in atomic collisions. I, Phys. Rev. 169, 84–91 (1968).CrossRefGoogle Scholar
  155. 155.
    J. C. Y. Chen. T. Ishihara, V. H. Ponce, and K. M. Watson, Electronic transitions in slow collisions of atoms and molecules. V, Phys. Rev. A 8, 1334–1344 (1973).Google Scholar
  156. 156.
    A. P. Penner and R. Wallace, Semiclassical normalization of a path integral for a multichannel scattering problem, Phys. Rev. A 11, 149–153 (1975).CrossRefGoogle Scholar
  157. 157.
    R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Company, New York (1965).Google Scholar
  158. 158.
    P. Pechukas, Time dependent semiclassical scattering theory. II. Atomic collisions, Phys. Rev. 181, 174–184 (1969).CrossRefGoogle Scholar
  159. 159.
    P. Pechukas and J. P. Davis, Semiclassical theory of weak vibrational excitation, J. Chem. Phys. 56, 4970–4975 (1972).CrossRefGoogle Scholar
  160. 160.
    L. D. Landau, Zur Theorie der Energieübertragung. II, Phys. Z. Sowjetunion 2, 46–51 (1932).Google Scholar
  161. 161.
    C. Zener, Non-adiabatic crossing of energy levels, Proc. R. Soc. London Ser. A 137, 696–702 (1932).CrossRefGoogle Scholar
  162. 162.
    E. C. G. Stueckelberg, Theorie der unelastischen Stösse zwischen Atomen, Helv. Phys. Acta 5, 369–422 (1932).Google Scholar
  163. 163.
    D. R. Bates, Collisions involving the crossing of potential energy curves, Proc. R. Soc. London Ser. A 257, 22–31 (1960).CrossRefGoogle Scholar
  164. 164.
    E. E. Nikitin, The Landau-Zener model and its region of applicability, Comments At. Mol. Phys. 1, 166–172 (1970).Google Scholar
  165. 165.
    M. S. Child, On the Stueckelberg formula for non-adiabatic transitions, Mol. Phys. 28, 495–501 (1974).CrossRefGoogle Scholar
  166. 166.
    E. E. Nikitin, The theory of nonadiabatic transitions: Recent development with exponential models, Adv. Quantum Chem. 5, 135–184 (1970).CrossRefGoogle Scholar
  167. 167.
    J. B. Delos and W. R. Thorson, Studies of the potential-curve-crossing problem. II, Phys. Rev. A 6, 728–745 (1972).CrossRefGoogle Scholar
  168. 168.
    Yu. N. Demkov, Charge transfer at small resonance defects, Zh. Eksp. Teor. Fiz. 45, 195–201 (1963).Google Scholar
  169. 169.
    R. E. Olson, Charge transfer at large internuclear distances, Phys. Rev. A 6, 1822–1830 (1972).CrossRefGoogle Scholar
  170. 170.
    L. Vainshtein, L. Presnyakov, and I. Sobel’man, Excitation of atoms by heavy particles, Zh. Eksp. Teor. Fiz. 43, 518–524 (1962).Google Scholar
  171. 171.
    D. R. Bates, Collision processes not involving chemical reactions, Discuss. Faraday Soc. 33, 7–13 (1962).CrossRefGoogle Scholar
  172. 172.
    E. F. Gurnee and J. L. Magee, Interchange of charge between gaseous molecules in resonant and near-resonant processes, J. Chem. Phys. 26, 1237–1248 (1957).CrossRefGoogle Scholar
  173. 173.
    N. Rosen and C. Zener, Double Stern-Gerlach experiment and related collision phenomena, Phys. Rev. 40, 502–507 (1932).CrossRefGoogle Scholar
  174. 174.
    D. Rapp and W. E. Francis, Charge exchange between gaseous ions and atoms, J. Chem. Phys. 37, 2631–2645 (1962).CrossRefGoogle Scholar
  175. 175.
    H. Nakamura, Collisional excitation transfer between atoms in near-resonant processes, J. Phys. Soc. Jpn 20, 2272–2278 (1965).CrossRefGoogle Scholar
  176. 176.
    K. Birkinshaw and J. B. Hasted, Inelastic collisions between atomic ions and diatomic molecules, J. Phys. B 4, 1711–1725 (1971).CrossRefGoogle Scholar
  177. 177.
    E. I. Dashevskaya, E. E. Nikitin, and A. I. Reznikov, Theory of collisionally induced intramultiplet mixing in excited alkali atoms, J. Chem. Phys. 53, 1175–1180 (1970).CrossRefGoogle Scholar
  178. 178.
    E. E. Nikitin, Nonadiabatic transitions between fine-structure components of alkali metal atoms during atomic collisions, Opt. Spectros. USSR. 19, 19–95 (1965).Google Scholar
  179. 179.
    C. H. Wang and W. J. Tomlinson, Collision-induced anisotropic relaxation in gases, Phys. Rev. 181, 115–124 (1969).CrossRefGoogle Scholar
  180. 180.
    J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Reaction of H+ with H2: Experiment, ab initio theory and a conceptual model, Chem. Phys. Lett. 10, 17–21 (1971).CrossRefGoogle Scholar
  181. 181.
    J. C. Tully, Trajectories in ion—molecule reactions, Ber. Bunsenges. Phys. Chem. 77, 557–565 (1973).Google Scholar
  182. 182.
    R. Duren, Differential cross sections for alkali—halogen collisions from trajectory calculations on intersecting surfaces, J. Phys. B 6, 1801–1813 (1973).CrossRefGoogle Scholar
  183. 183.
    J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Molecular beam and trajectory studies of reactions of H` with Hz, J. Chem. Phys. 60, 1634–1659 (1974).CrossRefGoogle Scholar
  184. 184.
    R. K. Preston and R. J. Cross, Jr., Competition between charge exchange and chemical reaction: The D++H2 system, J. Chem. Phys. 59, 3616–3622 (1973).CrossRefGoogle Scholar
  185. 185.
    G. E. Zahr, R. K. Preston, and W. H. Miller, Theoretical treatment of quenching in O (’D) + N2 collisions, J. Chem. Phys. 62, 1127–1135 (1975).CrossRefGoogle Scholar
  186. 186.
    G. Ochs and E. Teloy, Integral cross sections for reactions of H+ with D2, new measurements, J. Chem. Phys. 61, 4930–4931 (1974).CrossRefGoogle Scholar
  187. 187.
    M. Lipeles, Simple model for vibrational transfer in ion—molecule charge-exchange excitation, J. Chem. Phys. 5, 1252–1253 (1969).CrossRefGoogle Scholar
  188. 188.
    E. R. Fisher and E. Bauer, On the quenching of O (`D) by N2 and related reactions, J. Chem. Phys. 57, 1966–1974 (1972).CrossRefGoogle Scholar
  189. 189.
    A. Bjerre and E. E. Nikitin, Energy transfer in collisions of an excited sodium atom with a nitrogen molecule, Chem. Phys. Lett. 1, 179–181 (1967).CrossRefGoogle Scholar
  190. 190.
    E. R. Fisher and G. K. Smith, Vibration—electronic coupling in the quenching of electronically excited alkali atoms by diatomics, App. Opt. 10, 1803–1813 (1971).CrossRefGoogle Scholar
  191. 191.
    A. M. Wooley, Semiclassical scattering theory and total cross sections for systems with many crossing points, Mol. Phys. 22, 607–618 (1971).CrossRefGoogle Scholar
  192. 192.
    G. M. Kendall and R. Grice, Vibrational coordinates in the electron jump model, Mol. Phys. 24, 1373–1382 (1972).CrossRefGoogle Scholar
  193. 193.
    E. A. Gislason, Surface crossing model for ion—molecule reactions, J. Chem. Phys. 57, 3396–3400 (1972).CrossRefGoogle Scholar
  194. 194.
    M. S. Child, Franck—Condon transitions in multi-curve crossing processes, Faraday Discuss. Chem. Soc. 55, 30–33 (1973).CrossRefGoogle Scholar
  195. 195.
    Yu. N. Demkov and V. I. Osherov, Stationary and nonstationary problems in quantum mechanics that can be solved by means of contour integration, Zh. Eksp. Teor. Fiz. 53, 1589–1599 (1967).Google Scholar
  196. 196.
    J. B. Delos, On the reactions of N2 with O, J. Chem. Phys. 59, 2365–2369 (1973).CrossRefGoogle Scholar
  197. 197.
    J. C. Tully, Collision complex model for spin forbidden reactions: Quenching of O (’D) by N2, J. Chem. Phys. 61, 61–68 (1974).CrossRefGoogle Scholar
  198. 198.
    P. Pechukas, J. C. Light, and C. Rankin, Statistical theory of chemical kinetics, J. Chem. Phys. 44, 794–804 (1966).CrossRefGoogle Scholar
  199. 199.
    J. R. Krenos and J. C. Tully, Statistical partitioning of electronic energy: Reactions of alkali dimers with halogen atoms, J. Chem. Phys. 62, 420–424 (1975).CrossRefGoogle Scholar
  200. 200.
    M. Yen Chu and J. S. Dahler, A theory of the collision-induced singlet to triplet transition of methylene, Mol. Phys. 27, 1045–1069 (1974).CrossRefGoogle Scholar
  201. 201.
    J. C. Tully, Reactions of O (’D) with atmospheric molecules, J. Chem. Phys. 62, 1893–1898 (1975).CrossRefGoogle Scholar
  202. 202.
    R. D. Levine and R. B. Bernstein, Dynamical theory of vibrational state population distribution in electronic-to-vibrational energy transfer, Chem. Phys. Lett. 15, 1–6 (1972).CrossRefGoogle Scholar
  203. 203.
    M. A. Gonzalez, G. Karl, and P. J. S. Watson, Electronic—vibrational energy transfer: Hg* + CO, J. Chem. Phys. 57, 4054–4055 (1972).CrossRefGoogle Scholar
  204. 204.
    Y. Haas, R. D. Levine, and G. Stein, Electronic excitation induced by reactive molecular collisions: A theoretical model, Chem. Phys. Lett. 15, 7–11 (1972).CrossRefGoogle Scholar
  205. 205.
    A. D. Wilson and R. D. Levine, Simple models of vibrational excitation in energy transfer molecular collisions, Mol. Phys. 27, 1197–1216 (1974).CrossRefGoogle Scholar
  206. 206.
    R. E. Olson, Absorbing-sphere model for calculating ion—ion recombination total cross sections, J. Chem. Phys. 56, 2979–2984 (1972).CrossRefGoogle Scholar
  207. 207.
    A. Messiah, Quantum Mechanics, Vol. I, John Wiley and Sons, Inc., New York (1961), Chap. 10.Google Scholar
  208. 208.
    T. A. Green and M. E. Riley, Strong-coupling semiclassical methods: Phase corrected average approximation for atom—atom collisions, Phys. Rev. A 8, 2938–2945 (1973).CrossRefGoogle Scholar
  209. 209.
    G. A. L. Delvigne and J. Los, Rainbow, Stueckelberg oscillations and rotational coupling on the differential cross sections of Na+I—Na++I, Physica (Utrecht) 67, 166–196 (1973).CrossRefGoogle Scholar
  210. 210.
    B. C. Eu and T. P. Tsien, Uniform WKB theory of inelastic collisions: Application to He+—Ne inelastic collisions, Phys. Rev. A 7, 648–657 (1973).CrossRefGoogle Scholar
  211. 211.
    B. C. Eu, Theory of inelastic collisions: Uniform asymptotic (WKB) solutions and semiclassical S-matrix elements for two-channel problems, J. Chem. Phys. 55, 5600–5609 (1971).CrossRefGoogle Scholar
  212. 212.
    B. C. Eu, Theory of inelastic collisions: Uniform asymptotic (WKB) solutions and semiclassical scattering matrix elements for multichannel problems, J. Chem. Phys. 56, 2507–2516, 5202 (1972).Google Scholar
  213. 213.
    B. C. Eu, Semiclassical theory of rearrangement and exchange collisions, J. Chem. Phys. 58, 472–478 (1973).CrossRefGoogle Scholar
  214. 214.
    B. C. Eu, Theory of inelastic collisions: Extension to multiple turning point problems of uniform WKB theory, J. Chem. Phys. 59, 4705–4713 (1973).CrossRefGoogle Scholar
  215. 215.
    U.-I. Cho and B. C. Eu, Improved solutions to the equation of motion in the uniform WKB theory for two-channel problems, J. Chem. Phys. 61, 1172–1179 (1974).CrossRefGoogle Scholar
  216. 216.
    L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Addison-Wesley Publishing Company. Inc., Reading, Mass. (1958), p. 178.Google Scholar
  217. 217.
    R. K. Preston, C. Sloan, and W. H. Miller, Semiclassical theory of collisionally induced fine-structure transitions in fluorine atoms, J. Chem. Phys. 60, 4961–4969 (1974).CrossRefGoogle Scholar
  218. 218.
    Y.-W. Lin, T. F. George,and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: H++D2—*HD++D, J. Chem. Phys: 60, 4311–4322 (1972).CrossRefGoogle Scholar
  219. 219.
    Y.-W. Lin, T. F. George, and K. Morokuma, Semiclassical treatment of electronic transitions in molecular collisions: Three-dimensional H++D2—HD++D2, Chem. Phys. Lett. 30, 49–53 (1975).CrossRefGoogle Scholar
  220. 220.
    T. F. George and Y.-W. Lin, Multiple transition points in a semiclassical treament of electronic transitions in atom (ion)—diatom collisions, J. Chem. Phys. 60, 2340–2349 (1974).CrossRefGoogle Scholar
  221. 221.
    K. Morokuma and T. F. George, Ab initio calculations of potential energy surfaces in the complex plane. I. General theory and one-electron example. J. Chem. Phys. 59, 1959–1973 (1973).CrossRefGoogle Scholar
  222. 222.
    R. L. Jaffe, T. F. George, and K. Morokuma, Calculations of potential energy surfaces in the complex plane. III. Branch-point structure and rational fractions, Mol. Phys. 28, 1489 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • John C. Tully
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations