Features of Potential Energy Surfaces and Their Effect on Collisions

  • P. J. Kuntz
Part of the Modern Theoretical Chemistry book series (MTC, volume 2)

Abstract

In this chapter we shall discuss molecular rearrangement collisions that take place on a single potential energy surface. Nonreactive collisions, particularly those involving vibrational energy transfer, are treated in Chapter 4 of Part A; multipotential processes are treated in Chapter 5 of Part B. Because most of the work devoted to the correlation of collision phenomena with features of potential energy functions has been done within the framework of classical mechanics, the major part of the discussion will utilize the language appropriate to such a description of the motion. For most chemical systems, such a treatment is entirely adequate.

Keywords

Barrier Height Potential Energy Surface Potential Surface Reactive Cross Section Entrance Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. D. Levine and R. B. Bernstein, Energy disposal and energy requirements for elementary chemical reactions, Faraday Discuss. Chem. Soc. 55, 100–112 (1973).CrossRefGoogle Scholar
  2. 2.
    K. T. Gillen, A. M. Rulis, and R. B. Bernstein, Molecular beam study of the K + Iz reaction, J. Chem. Phys. 54, 2831–2851 (1971).CrossRefGoogle Scholar
  3. 3.
    G. Hancock, C. Morley, and I. W. M. Smith, Vibrational excitation of CO in the reaction O+CS-NCO+S, Chem. Phys. Lett. 12, 193–196 (1971).CrossRefGoogle Scholar
  4. 4.
    T. J. Odiorne, P. R. Brooks, and J. V. V. Kaspar, Molecular beam reaction of K with HCI: Effect of vibrational excitation of HCI, J. Chem. Phys. 55, 1980–1983 (1971).CrossRefGoogle Scholar
  5. 5.
    J. G. Pruett, F. R. Grabiner, and P. R. Brooks, Molecular beam reaction of K with HCI: Effect of translational excitation of reagents, J. Chem. Phys. 60, 3335–3336 (1974).CrossRefGoogle Scholar
  6. 6.
    D. J. Douglas, J. C. Polanyi, and J. J. Sloan, Effect of reagent vibrational excitation on the rate of a substantially endothermic reaction: HCI (ti = 1–4) + Br+Cl + HBr, J. Chem. Phys. 59, 6679–6680 (1973).CrossRefGoogle Scholar
  7. 7.
    K. G. Anlauf, P. J. Kuntz, D. H. Maylotte, P. D. Pacey, and J. C. Polanyi, Energy distribution among reaction products, Discuss. Faraday Soc. 44, 183–193 (1967).CrossRefGoogle Scholar
  8. 8.
    J. L. Kinsey, in: MTP International Review of Science (J. C. Polanyi, ed.), Vol. 9, “Chemical Kinetics,” p. 173, Butterworth and Company (Publishers) Ltd., London (1972).Google Scholar
  9. 9.
    T. Carrington and J. C. Polanyi, in: MTPlnternational Review of Science (J. C. Polanyi, ed.), Vol. 9, “Chemical Kinetics,” p. 135, Butterworth and Company (Publishers) Ltd., London (1972).Google Scholar
  10. 10.
    P. R. Brooks, Scattering of K atoms from oriented CF3I, Faraday Discuss. Chem. Soc. 55, 299–306 (1973).CrossRefGoogle Scholar
  11. 11.
    W. A. Chupka, in: Ion-Molecule Reactions (J. L. Franklin, ed.), Vol. 1, Chap. 3, Plenum Press, New York (1972).Google Scholar
  12. 12.
    R. B. Bernstein and A. M. Rulis, Translational energy dependence of product energy and angular distribution for the K+CH3I- KI+CH3 reaction, Faraday Discuss. Chem. Soc. 55, 293–298 (1973).CrossRefGoogle Scholar
  13. 13.
    H. Eyring and S. H. Lin, in: Physical Chemistry, An Advanced Treatise (W. Jost, ed.), Vol. VIA, Chap. 3, Academic Press, Inc., New York (1974).Google Scholar
  14. 14.
    J. C. Slater, Quantum Theory of Molecules and Solids, Vol. 1, “Electronic Structure of Molecules,” McGraw-Hill Book Company, New York (1963).Google Scholar
  15. 15.
    H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry, John Wiley and Sons, Inc., New York (1944).Google Scholar
  16. 16.
    J. C. Polanyi and J. L. Schreiber, in: Physical Chemistry, An Advanced Treatise (W. Jost. ed.), Vol. VIA, Chap. 6, Academic Press, Inc., New York (1974).Google Scholar
  17. 17.
    D. L. Bunker, Classical trajectory methods, Methods Comput. Phys. 10, 287–325 (1971).Google Scholar
  18. 18.
    D. R. McLaughlin and D. L. Thompson, Ab initio dynamics: HeH++H2→He+H3(C2) classical trajectories using a quantum mechanical potential energy surface, J. Chem. Phys. 59, 4393–4405(1973).CrossRefGoogle Scholar
  19. 19.
    N. C. Blais and J. B. Cross, Molecular beam kinetics: The differential cross section of the reaction Cl + Br2, J. Chem. Phys. 52, 3580–3586 (1970).CrossRefGoogle Scholar
  20. 20.
    G. R. North and J. J. Leventhal, Classical superposition phenomena in HZ (v=0)+He reactive collisions, Chem. Phys. Lett. 23, 600–602 (1973).CrossRefGoogle Scholar
  21. 21.
    N. C. Biais and D. G. Truhlar, Monte Carlo trajectories: Dynamics of the reaction F + D2 on a semi-empirical valence-bond potential energy surface, J. Chem. Phys. 58, 1080–1108 (1973).Google Scholar
  22. 22.
    J. M. White and D. L. Thompson, Monte Carlo quasiclassical trajectory study of Br + HBr and H + HBr: Effect of reagent vibration and rotation on reaction rates and energy transfer, J. Chem. Phys. 61, 719–732 (1974).Google Scholar
  23. 23.
    J. M. White, Trajectory study of reactions in HBr-Br2 systems, J. Chem. Phys. 58, 4482–4495 (1973).CrossRefGoogle Scholar
  24. 24.
    R. N. Porter, L. B. Sims, D. L. Thompson, and L. M. Raff, Classical dynamical investigations of reaction mechanism in three-body hydrogen-halogen systems, J. Chem. Phys. 58, 2855–2869 (1973).CrossRefGoogle Scholar
  25. 25.
    C. A. Parr, J. C. Polanyi, and W. H. Wong, Distribution of reaction products (theory). VIII. Cl + HI, Cl + DI, J. Chem. Phys. 58, 5–20 (1973).CrossRefGoogle Scholar
  26. 26.
    J. B. Anderson and R. T. V. Kung, Vibrational population inversion in hydrogen iodide from H+I2-*HI+I, J. Chem. Phys. 58, 2477–2479 (1973).CrossRefGoogle Scholar
  27. 27.
    J. D. McDonald, Classical trajectory studies of angular distributions of reactions of deuterium atoms with iodine molecules, J. Chem. Phys. 60, 2040–2046 (1974).CrossRefGoogle Scholar
  28. 28.
    P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, S. D. Rosner, and C. E. Young, Energy distribution among products of exothermic reactions. II. Repulsive, mixed, and attractive energy release, J. Chem. Phys. 44, 1168–1184 (1966).CrossRefGoogle Scholar
  29. 29.
    J. C. Polanyi and W. H. Wong, Location of energy barriers. I. Effect on the dynamics of reactions A + BC, J. Chem. Phys. 51, 1439–1460 (1969).CrossRefGoogle Scholar
  30. 30.
    B. A. Hodgson and J. C. Polanyi, Location of energy barriers. IV. Effect of rotation and mass on the dynamics of reactions A+BC, J. Chem. Phys. 55, 4745–4757 (1971).CrossRefGoogle Scholar
  31. 31.
    M. H. Mok and J. C. Polanyi, Location of energy barriers. III. Effect on the dynamics of AB + CD=AC+ BD, J. Chem. Phys. 53, 4588–4604 (1970).CrossRefGoogle Scholar
  32. 32.
    D. S. Perry, J. C. Polanyi, and C. W. Wilson, Jr., Location of energy barriers. VI, The dynamics of endothermic reactions AB + C, Chem. Phys. 3, 317–331 (1974).CrossRefGoogle Scholar
  33. 33.
    T. B. Borne and D. L. Bunker, Trajectory studies of halogen atom-molecule exchange reactions, J. Chem. Phys. 55, 4861–4866 (1971).CrossRefGoogle Scholar
  34. 34.
    D. L. Bunker and N. C. Biais, Monte Carlo calculations. V. Three-dimensional study of a general bimolecular interaction potential, J. Chem. Phys. 41, 2377–2386 (1964).CrossRefGoogle Scholar
  35. 35.
    F. T. Wall and R. N. Porter, Sensitivity of exchange-reaction probabilities to the potential energy surface, J. Chem. Phys. 39, 3112–3117 (1963).CrossRefGoogle Scholar
  36. 36.
    J. W. Duff and Donald G. Truhlar, Effect of curvature of the reaction path on dynamic effects in endothermic chemical reactions and product energies in exothermic reactions, J. Chem. Phys. 62, 2477–2491 (1975).CrossRefGoogle Scholar
  37. 37.
    I. G. Csizmadia, J. C. Polanyi, A. C. Roach, and W. H. Wong, Distribution of reaction products (theory). VII. D+ H2-. DH+H+ using an ab initio potential energy surface, Can. J. Chem. 47, 4097–4099 (1969).CrossRefGoogle Scholar
  38. 38.
    N. C. Biais and D. L. Bunker, Monte Carlo calculations. II. Reactions of alkali atoms with methyl iodide, J. Chem. Phys. 37, 2713–2720 (1962).CrossRefGoogle Scholar
  39. 39.
    N. C. Biais and D. L. Bunker, Monte Carlo calculations. III. A general study of bimolecular exchange reactions, J. Chem. Phys. 39, 315–323 (1963).CrossRefGoogle Scholar
  40. 40.
    M. Karplus and L. M. Raff, Theoretical investigations of reactive collisions in molecular beams: K + CH3I, J. Chem. Phys. 41, 1267–1277 (1964).CrossRefGoogle Scholar
  41. 41.
    L. M. Raff and M. Karplus, Theoretical investigations of reactive collisions in molecular beams: K + CH3I and related systems, J. Chem. Phys. 44, 1212–1229 (1966).CrossRefGoogle Scholar
  42. 42.
    F. O. Ellison, A method of diatomics-in-molecules. I. General theory and application to H2O, J. Am. Chem. Soc. 85, 3540–3544 (1963).CrossRefGoogle Scholar
  43. 43.
    J. C. Tully, Diatomics-in-molecules potential energy surfaces. I. First-row triatomic hydrides, J. Chem. Phys. 58, 1396–1410 (1973).CrossRefGoogle Scholar
  44. 44.
    P. J. Kuntz, Use of the method of diatomics-in-molecules in fitting ab initio potential surfaces: The system HeHZ, Chem. Phys. Lett. 16, 581–583 (1972).CrossRefGoogle Scholar
  45. 45.
    B. Liu, Ab initio potential energy surface for linear H3, J. Chem. Phys. 58, 1925–1937 (1973).CrossRefGoogle Scholar
  46. 46.
    E. Steiner, P. R. Certain, and P. J. Kuntz, Extended diatomics-in-molecules calculations, J. Chem. Phys. 59, 47–55 (1973).CrossRefGoogle Scholar
  47. 47.
    P. J. Brown and E. F. Hayes, Non-empirical LCAO-MO-SCF study of the energy surface for linear HeHZ, J. Chem. Phys. 55, 922–926 (1971).CrossRefGoogle Scholar
  48. 48.
    J. R. Krenos, R. K. Preston, R. Wolfgang, and J. C. Tully, Molecular beam and trajectory studies of reactions of H+ with H2, J. Chem. Phys. 60, 1634–1659 (1974).CrossRefGoogle Scholar
  49. 49.
    C. W. Bauschlicher, Jr., S. V. O’Neil, R. K. Preston, H. F. Schaefer III, and C. F. Bender, Avoided intersection of potential energy surfaces: The (H+ + H2, H + HZ) system, J. Chem. Phys. 59, 1286–1292 (1973).CrossRefGoogle Scholar
  50. 50.
    D. R. Yarkony, S. V. O’Neil, H. F. Schaefer III, C. P. Baskin, and C. F. Bender, Interaction potential between two rigid HF molecules, J. Chem. Phys. 60, 855–865 (1974).CrossRefGoogle Scholar
  51. 51.
    C. F. Bender, P. K. Pearson, S. V. O’Neil, and H. F. Schaefer III, Potential energy surface including electron correlation for the chemical reaction F+H2→FH+H. I. Preliminary surface, J. Chem. Phys. 56, 4626–4631 (1972).CrossRefGoogle Scholar
  52. 52.
    J. Grosser and H. Haberland, Reactive scattering of hydrogen and deuterium atoms from halogen molecules, Chem. Phys. 2, 342–351 (1973).CrossRefGoogle Scholar
  53. 53.
    J. O. Hirschfelder, Coordinates which diagonalize the kinetic energy of relative motion, Int. J. Quantum Chem. III5, 17–31 (1969).Google Scholar
  54. 54.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York (1941).Google Scholar
  55. 55.
    G. L. Hofacker and R. D. Levine, A non-abiabatic model for population inversion in molecular collisions, Chem. Phys. Lett. 9, 617–620 (1971).CrossRefGoogle Scholar
  56. 56.
    R. A. Marcus, On the analytical mechanics of chemical reactions: Classical mechanics of linear collisions, J. Chem. Phys. 45, 4500–4504 (1966).CrossRefGoogle Scholar
  57. 57.
    G. Miller and J. C. Light, Quantum calculations of collinear reactive triatomic systems. III. H+C12-*HCI+CI, J. Chem. Phys. 54, 1643–1651 (1971).CrossRefGoogle Scholar
  58. 58.
    J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. II. Dependence on the potential energy surface, J. Chem. Phys. 56, 2997–3006 (1972).CrossRefGoogle Scholar
  59. 59.
    D. J. Kouri and M. Baer, Collinear quantum mechanical calculations of the He+Hz proton transfer reaction, Chem. Phys. Lett. 24, 37–40 (1974).CrossRefGoogle Scholar
  60. 60.
    P. J. Kuntz and W. N. Whitton, Trajectory calculations for the reactions HZ +He →H+HeH, Chem. Phys. Lett. 34, 340–342 (1975).CrossRefGoogle Scholar
  61. 61.
    J. T. Muckerman, Monte Carlo calculations of energy partitioning and isotope effects in reaction of fluorine atoms with H2, HD, and D2, J. Chem. Phys. 54. 11. 55–1164 (1971).Google Scholar
  62. 62.
    J. T. Muckerman, Classical dynamics of the reaction of fluorine atoms with hydrogen molecules. III. The hot-atom reactions of 18F with HD, J. Chem. Phys. 57, 3388–3396 (1972).CrossRefGoogle Scholar
  63. 63.
    R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. I. F+H2-*HF+H, J. Chem. Phys. 57, 912–917 (1972).CrossRefGoogle Scholar
  64. 64.
    R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. II. H+HF(v)-*H2(v’)+F and H+HF(v)-+HF(v’)+H, J. Chem. Phys. 58,3038–3046(1973).Google Scholar
  65. 65.
    R. L. Wilkins, Monte Carlo calculation of reaction rates and energy distributions among reaction products. III. H+F2-*HF+F and D+F2→DF+F, J. Chem. Phys. 58, 2326–2332 (1973).CrossRefGoogle Scholar
  66. 66.
    L. T. Cowley, D. S. Horne, and J. C. Polanyi, Infrared chemiluminescence study of the reaction CI+HI-*HCI+I at enhanced collision energies, Chem. Phys. Lett. 12, 144–149 (1971).CrossRefGoogle Scholar
  67. 67.
    A. M. G. Ding, L. J. Kirsch, D. S. Perry, J. C. Polanyi, and J. L. Schreiber. Effect of changing reagent energy on reaction probability and product energy distribution, Faraday Discuss. Chem. Soc. 55, 252–276 (1973).CrossRefGoogle Scholar
  68. 68.
    P. M. Hierl, Z. Herman, and R. Wolfgang, Chemical accelerator studies of isotope effects on collision dynamics of ion-molecule reactions: Elaboration of a model for direct reactions, J. Chem. Phys. 53,660–673(1970).CrossRefGoogle Scholar
  69. 69.
    M. Chiang, E. A. Gislason, B. H. Mahan, C. W. Tsao, and S. W. Werner, Dynamics of the reaction Ar’ with D2, J. Chem. Phys. 52, 2698–2708 (1970).CrossRefGoogle Scholar
  70. 70.
    C. A. Parr, J. C. Polanyi, W. H. Wong, and D. C. Tardy, General discussion, Faraday Discuss. Chem. Soc. 55, 308–309 (1973).Google Scholar
  71. 71.
    P. J. Kuntz and A. C. Roach, Classical trajectory study of exothermic ion-molecule reactions, J. Chem. Phys. 59, 6299–6311 (1973).CrossRefGoogle Scholar
  72. 72.
    R. A. LaBudde, P. J. Kuntz, R. B. Bernstein, and R. D. Levine, Classical trajectory study of the K+CH3I reaction, J. Chem. Phys. 59, 6286–6298 (1973).CrossRefGoogle Scholar
  73. 73.
    R. B. Bernstein, Potential practical applications of basic research in molecular dynamics, Isr. J. Chem. 9, 615–635 (1971).Google Scholar
  74. 74.
    K. T. Gillen, B. H. Mahan, and J. S. Winn, Dynamics of the O+ + H2 reaction, J. Chem. Phys. 59, 6380–6396 (1973).CrossRefGoogle Scholar
  75. 75.
    P. J. Kuntz, Analytical properties of a direct interaction model for gas-phase chemical reactions A+BC-CAB+C, Trans. Faraday Soc. 66, 2980–2996 (1970).CrossRefGoogle Scholar
  76. 76.
    P. J. Kuntz, The K+CH3I-* KI+CH3 reaction: Interpretation of the product angular and energy distributions in terms of a direct interaction model, Mol. Phys. 23, 1035–1050 (1972).CrossRefGoogle Scholar
  77. 77.
    A. M. Rulis and R. B. Bernstein, Molecular beam study of the K + CH3I reaction: Energy dependence of the detailed differential reactive cross section, J. Chem. Phys. 57, 5497–5515 (1972).CrossRefGoogle Scholar
  78. 78.
    N. N. Hijazi and K. J. Laidler, Dynamics of collinear A + BC systems, J. Chem. Phys. 58, 349–353 (1973).CrossRefGoogle Scholar
  79. 79.
    M. Karplus, R. N. Porter, and R. D. Sharma, Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys. 43. 3259–3287 (1965).CrossRefGoogle Scholar
  80. 80.
    N. C. Biais, Monte Carlo trajectories: The dynamics of harpooning in alkali-halogen reactions, J. Chem. Phys. 49, 9–14 (1968).CrossRefGoogle Scholar
  81. 81.
    M. Godfrey and M. Karplus, Theoretical investigations of reactive collisions in molecular beams: K + Br2, J. Chem. Phys. 49, 3602–3609 (1968).CrossRefGoogle Scholar
  82. 82.
    M. H. Mok and J. C. Polanyi, Location of energy barriers. II. Correlation with barrier beight, J. Chem. Phys. 51, 1451–1469 (1969).CrossRefGoogle Scholar
  83. 83.
    W. B. Miller, S. A. Safron, and D. R. Herschbach, Exchange reactions of alkali atoms with alkali halides: A collision complex mechansm, Discuss. Faraday Soc. 44, 108–122 (1967).CrossRefGoogle Scholar
  84. 84.
    A. C. Roach and M. S. Child, Electronic potential energy surfaces for the reaction K+NaC1–KC1+Na, Mol. Phys. 14, 1–15 (1968).CrossRefGoogle Scholar
  85. 85.
    G. H. Kwei, B. P. Boffardi, and S. F. Sun, Classical trajectory studies of long-lived collision complexes. I. Reaction of K atoms with NaCI molecules, J. Chem. Phys. 58, 1722–1734 (1973).CrossRefGoogle Scholar
  86. 86.
    I. G. Csizmadia, R. E. Kari, J. C. Polanyi, A. C. Roach, and M. A. Robb, Ab initio SCF-MO-CI calculations for H, H2, and H3 using Gaussian basis sets, J. Chem. Phys. 52, 6205–6211 (1970).CrossRefGoogle Scholar
  87. 87.
    I. W. M. Smith, Experimental and computer studies of the kinetics and distribution of vibrational energy in both products of the reaction O(3P)+CS2→SO + CS, Discuss. Faraday Soc. 44, 1964–1974 (1967).CrossRefGoogle Scholar
  88. 88.
    L. M. Raff, Classical Monte Carlo analysis of four-body reactions: K + C2H51 system, J. Chem. Phys. 44, 1202–1211 (1966).CrossRefGoogle Scholar
  89. 89.
    P. J. Kuntz, E. M. Nemeth, J. C. Polanyi, and W. H. Wong, Distribution of reaction products. VI. Hot-atom reactions, T + HR, J. Chem. Phys. 52, 4654–4674 (1970).CrossRefGoogle Scholar
  90. 90.
    D. L. Bunker and M. D. Pattengill, Trajectory studies of hot-atom reactions. I. Tritium and methane, J. Chem. Phys. 53, 3041–3049 (1970).CrossRefGoogle Scholar
  91. 91.
    T. Valencich and D. L. Bunker, Energy-dependent cross sections for the tritium-methane hot-atom reactions, Chem. Phys. Lett. 20, 50–52 (1973).CrossRefGoogle Scholar
  92. 92.
    L. M. Raff, Theoretical investigations of the reaction dynamics of polyatomic systems: Chemistry of the hot-atom systems (T + CI-14) and (T + CD4), J. Chem. Phys. 60, 2220–2244 (1974).CrossRefGoogle Scholar
  93. 93.
    P. J. Kuntz, M. H. Mok, and J. C. Polanyi, Distribution or reaction products. V. Reactions forming an ionic bond, M+XC (3D), J. Chem. Phys. 50, 4623–4652 (1969).CrossRefGoogle Scholar
  94. 94.
    P. J. Kuntz and A. C. Roach, Ion-Molecule reactions of the rare gases with hydrogen, J. Chem. Soc. Faraday Trans. II 68, 259–280 (1972).CrossRefGoogle Scholar
  95. 95.
    S. Chapman and R. K. Preston, Nonadiabatic molecular collisions: Charge exchange and chemical reaction in the Ar+ + H2 system, J. Chem. Phys. 60, 650–659 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • P. J. Kuntz
    • 1
    • 2
  1. 1.Hahn-Meitner Institut für KernforschungBerlin GmbHWest Germany
  2. 2.St. Mary’s UniversityHalifaxCanada

Personalised recommendations