Alcohol Intoxication and Withdrawal pp 65-78 | Cite as
Disposition of Catecholamine-Derived Alkaloids in Mammalian Systems
Chapter
Abstract
The biosynthesis of alkaloids has long been considered unique to plants. Evidence evolving in recent years, however, indicates that mammalian systems may also possess this capability and the potential pharmacological consequences of biosynthesized alkaloids may be of great significance.
Keywords
Mammalian System TRIMETHYLSILYL Ether Alkaloid Biosynthesis Methylene Unit Isoquinoline Alkaloid
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Yamanaka, Y., Walsh, M.J. and Davis, V.E.: Salsolinol, an alkaloid derivative of dopamine formed in vitro during alcohol metabolism. Nature 227: 1143–1144, 1970.CrossRefGoogle Scholar
- 2.Cohen, G. and Collins, M.: Alkaloids from catecholamines in adrenal tissue: possible role in alcoholism. Science 167: 1749 1751, 1970.Google Scholar
- 3.Greenberg, R.S. and Cohen, G.: Tetrahydroisoquinoline alkaloids: stimulated secretion from the adrenal medulla. J. Pharmacol. Exp. Therap. 184: 119–128, 1973.Google Scholar
- 4.Cohen, G.: A role for tetrahydroisoquinoline alkaloids as false adrenergic neurotransmitters in alcoholism. In M.M. Gross (ed.), Alcohol Intoxication and Withdrawal, Experimental Studies. Adv. Exp. Biol. Med. 35: 33–44, New York: Plenum Press. 1973.Google Scholar
- 5.Mytilineou, C., Cohen, G. and Barrett, R.: Tetrahydroisoquinoline alkaloids: uptake and release by adrenergic nerves in vivo. Eur. J. Pharmacol. 25: 390–401, 1974.CrossRefGoogle Scholar
- 6.Davis, V.E.: Alcohol and aberrant metabolism of biogenic amines. In M.K. Roach, W.M. Mclssac and P.J. Creaven (eds.), Biological Aspects of Alcohol, pp. 293–312. Austin: University of Texas Press. 1971.Google Scholar
- 7.Davis, V.E. and Walsh, M.J.: Alcohol, amines and alkaloids: a possible biochemical basis for alcohol addiction. Science 167: 1005–1007, 1970.CrossRefGoogle Scholar
- 8.Davis, V.E., Walsh, M.J. and Yamanaka, Y.: Augmentation of alkaloid formation from dopamine by alcohol and acetaldehyde in vitro. J. Pharmacol. Exp. Ther. 174: 401–412, 1970.Google Scholar
- 9.Davis, V.E. and Walsh, M.J.: Effect of ethanol on neuroamine metabolism. In Y. Isreal and J. Mardones (eds.), Biological Basis of Alcoholism, pp. 73–102. New York: Wiley-Interscience. 1971.Google Scholar
- 10.Davis, V.E.: Neuroamine-derived alkaloids: a possible common denominator in alcoholism and related drug dependencies. Ann. N.Y. Acad. Sci. 215: 111–115, 1973.CrossRefGoogle Scholar
- 11.Davis, V.E., Cashaw, J.L., McLaughlin, B.R. and Hamlin, T.A.: Alternation of norepinephrine metabolism by barbiturates. Biochem. Pharmacol. 23: 1877–1889, 1974.CrossRefGoogle Scholar
- 12.Whaley, W.M. and Govindachari, T.R.: The Pictet-Spengler synthesis of tetrahydroisoquinolines and related compounds. In R. Adams et al. (eds.), Organic Reactions 6: 151–206. New York: Wiley. 1951.Google Scholar
- 13.Laidlaw, P.P.: The action of tetrahydropapaveroline hydrochloride. J. Physiol. (London) 40: 480–491, 1910.Google Scholar
- 14.Holtz, P., Stock, K. and Westermann, E.: Pharmakologie des Tetrahydropapaverolins und seine Entstehung aus Dopamin. Naunyn-Schmiedebergs Arch. Pharmakol. Exp. Pathol. 248: 387–405, 1964.Google Scholar
- 15.Santi, R., Bruni, A., Luciani, S., Toth, C.E., Ferrari, M., Fassina, G. and Contessa, A.R.: Pharmacological properties of tetrahydropapaveroline and their relation to the catecholamines. J. Pharm. Pharmacol. 16: 287–288, 1964.CrossRefGoogle Scholar
- 16.Santi, R., Ferrari, M., Toth, C.E., Contessa, A.R., Fassina, G., Bruni, A. and Luciani, S.: Pharmacological properties of tetrahydropapaveroline. J. Pharm. Pharmacol. 19: 45–51, 1967.CrossRefGoogle Scholar
- 17.Kukovetz, W.R. and Poch, G.: Beta-adrenerge Effekte und ihr zeitlicher Verlaug unter Tetrahydropapaverolin und Isoprenalin am Langendorff-Herzen. Naunyn-Schmeidebergs Arch. Pharmakol. Exp. Pathol. 256: 301–309, 1967.CrossRefGoogle Scholar
- 18.Battersby, A.R.: Alkaloid Biosynthesis. Quart. Rev. 15: 259–286, 1961.Google Scholar
- 19.Bentley, K.W.: The Isoquinoline Alkaloids. New York: Pergamon Press. 1965.Google Scholar
- 20.Spenser, E.D.: Biosynthesis of the alkaloids related to norlandanosoline. Lloydia 29: 71, 1966.Google Scholar
- 21.Kirby, G.W.: Biosynthesis of the morphine alkaloids. Science 155: 170–173, 1967.CrossRefGoogle Scholar
- 22.Robinson, T.: The Biochemistry of Alkaloids. pp. 54–71. New York: Springer Verlag. 1968.Google Scholar
- 23.Shamma, M.: The Isoquinoline Alkaloids: Chemistry and Pharmacology.In A.T. Blomquist and H. Wasserman (eds.) Organic Chemistry, 25. New York: Academic Press. 1972.Google Scholar
- 24.Sandler, M., Carter, S.B., Hunter, K.R. and Stern, G.M.: Tetrahydroisoquinoline alkaloids: in vivo metabolites of L-dopa in man. Nature 241: 439–443, 1973.CrossRefGoogle Scholar
- 25.Collins, M.A. and Bigdeli, M.D.: Alcohol intoxication and in vivo biosynthesis of the alkaloid, salsolinol, from dopamine in rat brain. Trans. Amer. Soc. Neurochem. 5: 160, 1974.Google Scholar
- 26.Algeri, S., Baker, K.M., Frigerio, A. and Turner, A.J.: Identification and quantitation of tetrahydropapaveroline in rat brain. Proc. 21st Annual Conference Amer. Soc. Mass Spectrometry: 301–302, 1973.Google Scholar
- 27.Collins, A.C., Cashaw, J.L. and Davis, V.E.: Dopamine-derived tetrahydroisoquinoline alkaloids–inhibitors of neuroamine metabolism. Biochem. Pharmacol. 22: 2337–2348, 1973.CrossRefGoogle Scholar
- 28.Rubenstein, J.A. and Collins, M.A.: Tetrahydroisoquinolines derived from norepinephrine-aldehyde condensations–pyrogallol-sensitive 0-methylation in rat homogenates. Biochem. Pharmacol. 22: 2928–2931, 1973.CrossRefGoogle Scholar
- 29.Davis, V.E., Brown, H., Huff, J.A., and Cashaw, J.L.: Ethanol-induced alternations of norepinephrine metabolism in man. J. Lab. Clin. Med. 69: 787–799, 1967.Google Scholar
- 30.Cashaw, J.L., McMurtrey, K.D., Davis, V.E.: Proc. 165th National Meeting Amer. Chem. Soc. Anal. Chem. Div. Abstract No. 5, 1973.Google Scholar
- 31.Gupta, R.N. and Spenser, E.D.: Biosynthetic incorporation of one carbon units into berberine and hydrastine. Can. J. Chem. 43: 133, 1965.CrossRefGoogle Scholar
- 32.Macko, D., Douglas, B., Weisbach, J.A. and Waltz, D.T.: Studies on the pharmacology of nuciferine and related aporphines. Arch. in Pharmacodyn. 197: 261–273, 1972.Google Scholar
- 33.Alpers, H.S., McLaughlin, B.R., Nix, W.M. and Davis, V.E.: Tetrahydroisoquinoline and tetrahydroprotoberberine alkaloids: Inhibition of catecholamine accumulation by rat brain synaptosomal preparations. Fed. Proc. 33: 511, 1974.Google Scholar
- 34.Hsu, B. and Kin, K.C.: Pharmacological study of tetrahydropalmatine and its analogs–a new type of central depressants. Arch. int. Pharmacodyn., 139: 318–327, 1962.Google Scholar
- 35.Nakanishi, H.: Pharmacological studies of xylopinine, 2,3,10, 11-tetramethoxy-5,6–13,13a-tetrahydro-8-dibenzo(a-g)quinolizine, semisynthesized from phellodendrine isolated from Phellodendron amurense Rupp. Jap. J. Pharmacol. 12: 208–222, 1962.Google Scholar
- 36.Yamamoto, H.: The central effects of xylopinine in mice. Jap. J. Pharmacol. 13: 230–239, 1963.CrossRefGoogle Scholar
- 37.Roussel-UCLAF Patents, Substituted 3,9,10-trimethoxyberbine tranquilizers. Chem. Abstracts 69: 59475m, 1968; 1,2,3,10tetramethoxyberbine, a tranquilizing agent. Chem. Abstracts 71: 70788c, 1969; Tranquilizing d1–1,3,10-trimethoxyberbine. Chem. Abstracts. 73: 15063d, 1970.Google Scholar
Copyright information
© Springer Science+Business Media New York 1975