Chronic Granulomatous Disease

  • John T. Curnutte
  • Bernard M. Babior
Part of the Advances in Human Genetics book series (AHUG, volume 16)

Abstract

Chronic granulomatous disease (CGD) is a rare inherited disorder of host defense in which the phagocytic components of the immune system (neutrophils, eosinophils, monocytes, and macrophages) fail to generate hydrogen peroxide and oxygen radicals upon stimulation. Since these oxidants are normally used by phagocytes to kill microorganisms, phagocytes from patients with CGD show impaired microbicidal activity, and the patients themselves suffer from recurrent, and often life-threatening, bacterial and fungal infections.

Keywords

NADPH Oxidase Human Neutrophil Respiratory Burst Chronic Granulomatous Disease Respiratory Burst Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albrich, J. M., McCarthy, C. A., and Hurst, J. K., 1981, Biological reactivity of hypochlorous acid: Implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. USA 78: 210–214.PubMedGoogle Scholar
  2. Allen, R. C., Stjernholm, R. L., and Steele, R. H., 1972, Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Commun. 47: 679–684.PubMedGoogle Scholar
  3. Ambruso, D. R., and Johnston, Jr., R. B., 1981, Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions, and an enzymatic generating system, J. Clin. Invest. 67: 352–360.PubMedGoogle Scholar
  4. Anderson, D. C., Schmalstieg, F. C., Arnaout, M. A., Kohl, S., Tosi, M. F., Dana, N., Buffone, G. J., Hughes, B. J., Brinkley, B. R., Dickey, W. D., Abramson, J. S., Springer, T. A., Boxer, L. A., Hollers, J. M., and Smith, C. W., 1984, Abnormalities of polymorphonuclear leukocyte function associated with a heritable deficiency of high molecular weight surface glycoproteins (GP138): Common relationship to diminished cell adherence, J. Clin. Invest. 74: 536–551.PubMedGoogle Scholar
  5. Andrews, P. C., and Babior, B. M., 1983, Endogenous protein phosphorylation by resting and activated human neutrophils, Blood 61: 333–340.PubMedGoogle Scholar
  6. Andrews, P. C., and Babior, B. M., 1984, Phosphorylation of cytosolic proteins by resting and activated human neutrophils, Blood 64: 883–890.PubMedGoogle Scholar
  7. Autor, A. P., and Hoffman, M., 1981, NADPH-dependent oxygen reductase activity in pulmonary macrophages, Bull. Eur. Physiopathol. Resp. 17: 153–166.Google Scholar
  8. Azimi, P. H., Bodenbender, J. G., Hintz, R. L., and Kontras, S. B., 1968, Chronic gran-ulomatous disease in three female siblings, J. Am. Med. Assoc. 206: 2865–2870.Google Scholar
  9. Babior, B. M., and Crowley, C. A., 1983, Chronic granulomatous disease and other disorders of oxidative killing by phagocytes, in: Metabolic Basis of Inherited Disease ( J. B. Stan-bury, J. B. Wyngaarden, D. S. Fredrickson, J. L. Goldstein, and M. S. Brown, eds.), pp. 1956–1985, McGraw-Hill, New York.Google Scholar
  10. Babior, B. M., and Kipnes, R. S., 1977, Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement, Blood 50: 517–524.PubMedGoogle Scholar
  11. Babior, B. M., and Peters, W. A., 1981, The 02-producing enzyme of human neutrophils: Further properties, J. Biol. Chem. 256: 2321–2323.PubMedGoogle Scholar
  12. Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms: The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52: 741–744.PubMedGoogle Scholar
  13. Babior, B. M., Curnutte, J. T., and McMurrich, B. J., 1976, The particulate superoxide-forming system from human neutrophils: Properties of the system and further evidence supporting its participation in the respiratory burst, J. Clin. Invest. 58: 989–996.PubMedGoogle Scholar
  14. Babior, B. M., Hayakawa, T., Suzuki, K., and Suzuki, S., 1984, A deficiency in membrane protein phosphorylation in X-linked chronic granulomatous disease, Clin. Res. 32: 555a.Google Scholar
  15. Babior, G. L., Rosin, R. E., McMurrich, B. J., Peters, W. A., and Babior, B. M., 1981, Arrangement of the respiratory burst oxidase in the plasma membrane of the neutrophil, J. Clin. Invest. 67: 1724–1728.PubMedGoogle Scholar
  16. Badwey, J. A., and Karnovsky, M. L., 1980, Active oxygen species and the functions of phagocytic leukocytes, Annu. Rev. Biochem. 49: 695–726.PubMedGoogle Scholar
  17. Badwey, J. A., Curnutte, J. T., Robinson, J. M., Lazdins, J. K., Briggs, R. T., Karnovsky, M. J., and Karnovsky, M. L., 1980, Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: Magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases, J. Cell. Physiol. 105: 541–551.PubMedGoogle Scholar
  18. Badwey, J. A., Curnutte, J. T., Robinson. J. M., Berde, C. B., Karnovsky, M. J., and Karnovsky, M. L., 1984, Effects of free fatty acids on release of superoxide and on change of shape by human neutrophils: Reversibility by albumin, J. Biol. Chem. 259: 7870–7877.PubMedGoogle Scholar
  19. Badwey, J. A., Robinson, J. M., Karnovsky, M. J., and Karnovsky, M. L., 1986, Reduction and excitation of oxygen by phagocytic leukocytes: Biochemical and cytochemical techniques, in: Handbook of Experimental Immunology, 4th ed., Volume II. Cellular Immunology: Phagocytes ( D. M. Weir, and L. A. Herzenberg, eds.), pp. 501–5016, Blackwell, Edinburgh.Google Scholar
  20. Baehner, R. L., 1980, Neutrophil dysfunction associated with states of chronic and recurrent infection, Pediatr. Clin. North Am. 27: 377–401.PubMedGoogle Scholar
  21. Baehner, R. L., and Karnovsky, M. L., 1967, Leukocyte oxidase: Defective activity in chronic granulomatous disease, Science 155: 835–836.PubMedGoogle Scholar
  22. Baehner, R. L., and Karnovsky, M. L., 1968, Deficiency of reduced nicotinamide-adeninedinucleotide oxidase in chronic granulomatous disease, Science 162: 1277–1279.PubMedGoogle Scholar
  23. Baehner, R. L., and Nathan, D. G., 1968, Quantitative nitroblue tetrazolium test in chronic granulomatous disease, N. Engl. J. Med. 278: 971–976.PubMedGoogle Scholar
  24. Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1969, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 47: 187–192.Google Scholar
  25. Baehner, R. L., Johnston, Jr., R. B., and Nathan, D. G., 1972, Comparative study of the metabolic and bactericidal characteristics of severely glucose-6-phosphate dehydrogenase-deficient polymorphonuclear leukocytes and leukocytes from children with chronic granulomatous disease, J. Reticuloendothel. Soc. 12: 150–169.PubMedGoogle Scholar
  26. Baehner, R. L., Boxer, L. A., and Ingraham, L. M., 1982, Reduced oxygen by-products and white blood cells, in: Free Radicals in Biology, Volume V ( W. A. Pryor, ed.), pp. 91–113, Academic Press, New York.Google Scholar
  27. Baehner, R. L., Kunkel, L. M., Monaco, A. P., Haines, J. L., Conneally, P. M., Palmer, C., Heerema, N., and Orkin, S. H., 1986, DNA linkage analysis of X-linked chronic granulomatous disease, Proc. Natl. Acad. Sci. USA 83: 3398–3401.PubMedGoogle Scholar
  28. Bellavite, P., Serra, M. C., Davoli, A., and Rossi, F., 1982, Selective enrichment of NADPH oxidase activity in phagosomes from guinea pig polymorphonuclear leukocytes, Inflammation 6: 21–29.PubMedGoogle Scholar
  29. Bellavite, P., Serra, M. C., Davoli, A., Bannister, J. V., and Rossi, F., 1983a, The NADPH oxidase of guinea pig polymorphonuclear leukocytes: Properties of the deoxycholate extracted enzyme, Mol. Cell Biochem. 52: 17–25.PubMedGoogle Scholar
  30. Bellavite, P., Cross, A. R., Serra, M. C., Davoli, A., Jones, O. T. G., and Rossi, F., 1983b, The cytochrome b and flavin content and properties of the 02-forming NADPH oxidase solubilized from activated neutrophils, Biochim. Biophys. Acta 746: 40–47.PubMedGoogle Scholar
  31. Bellavite, P., Jones, O. T. G., Cross, A. R., Papini, E., and Rossi, F., 1984, Composition of partially purified NADPH oxidase from pig neutrophils, Biochem. J. 223: 639–648.PubMedGoogle Scholar
  32. Berridge, M. J., and Irvine, R. F., 1984, Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315–321.PubMedGoogle Scholar
  33. Berton, G., Bellavite, P., Dri, P., De Togni, P., and Rossi, F., 1982, The enzyme responsible for the respiratory burst in elicited guinea pig peritoneal macrophages, J. Pathol. 136: 273–290.PubMedGoogle Scholar
  34. Bielski, B. H. J., and Allen, A. O., 1977, Mechanism of the disproportionation of superoxide radicals, J. Phys. Chem. 81: 1048–1050.Google Scholar
  35. Bokoch, G. M., and Gilman, A. G., 1984, Inhibition of receptor-mediated release of arachidonic acid by pertussis toxin, Cell 39: 301–308.PubMedGoogle Scholar
  36. Borregaard, N., and Tauber, A. I., 1984, Subcellular localization of the human neutrophil NADPH-oxidase:b-cytochrome and associated flavoprotein, J. Biol. Chem. 259: 47–52.PubMedGoogle Scholar
  37. Borregaard, N., Johansen, K. S., and Esmann, V., 1979a, Quantitation of superoxide production in human polymorphonuclear leukocytes from normals and 3 types of chronic granulomatous disease, Biochem. Biophys. Res. Commun. 90: 214–219.PubMedGoogle Scholar
  38. Borregaard, N., Johansen, K. S., Taudorff, E., and Wandall, J. H., 1979b, Cytochrome b is present in neutrophils from patients with chronic granulomatous disease, Lancet 1: 949–951.PubMedGoogle Scholar
  39. Borregaard, N., Cross, A. R., Herlin, T., Jones, O. T. G., Segal, A. W., and Valerius, N. H., 1983a, A variant form of X-linked chronic granulomatous disease with normal nitroblue tetrazolium slide test and cytochrome b, Eur. J. Clin. Invest. 13: 243–247.PubMedGoogle Scholar
  40. Borregaard, N., Heiple, J. M., Simon, E. R., and Clark, R. A., 1983b, Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation, J. Cell Biol. 97: 52–61.PubMedGoogle Scholar
  41. Borregaard, N., Schwartz, J. H., and Tauber, A. I., 1984, Proton secretion by stimulated neutrophils: Significance of hexose monophosphate shunt activity as source of electrons and protons for the respiratory burst, J. Clin. Invest. 74: 455–459.PubMedGoogle Scholar
  42. Bougnoux, P., Bonvini, E., Stevenson, H. C., Markey, S., Zatz, M., and Hoffman, T., 1983, Identification of ubiquinone-50 as the major methylated nonpolar lipid in human monocytes: Regulation of its biosynthesis via methionine-dependent pathways and relationship to superoxide production. J. Biol. Chem. 258: 4339–4344.PubMedGoogle Scholar
  43. Boxer, L. A., Coates, T. D., Haak, R. A., Wolach, J. B., Hoffstein, S., and Baehner, R. L., 1982, Lactoferrin deficiency associated with altered granulocyte function, N. Engl. J. Med. 307: 404–410.PubMedGoogle Scholar
  44. Brandrup, F., Koch, C., Petri, M., Schiodt, M., and Johansen, K. S., 1981, Discoid lupus erythematosus-like lesions and stomatitis in female carriers of X-linked chronic granulomatous disease, Br. J. Dermatol. 104: 495–505.PubMedGoogle Scholar
  45. Bretz, U., and Baggiolini, M., 1974, Biochemical and morphological characterization of azurophil and specific granules of human neutrophilic polymorphonuclear leukocytes, J. Cell Biol. 63: 251–269.PubMedGoogle Scholar
  46. Bridges, R. A., Berendes, H., and Good, R. A., 1959, A fatal granulomatous disease of childhood, Am. J. Dis. Child. 97: 387–408.Google Scholar
  47. Briggs, R. T., Karnovsky, M. L., and Karnovsky, M. J., 1977, Hydrogen peroxide production in chronic granulomatous disease: A cytochemical study of reduced pyridine nucleotide oxidases, J. Clin. Invest. 59: 1088–1098.PubMedGoogle Scholar
  48. Britigan, B. E., Rosen, G. M., Chai, Y., and Cohen, M. S., 1986, Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry, J. Biol. Chem. 261: 4426–4431.PubMedGoogle Scholar
  49. Bromberg, Y., and Pick, E., 1984, Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages, Cell. Immunol. 88: 213–221.PubMedGoogle Scholar
  50. Bromberg, Y., and Pick, E., 1985, Activation of NADPH-dependent superoxide production in a cell-free system by sodium dodecyl sulfate, J. Biol. Chem. 260: 13539–13545.PubMedGoogle Scholar
  51. Cagan, R. H., and Karnovsky, M. L., 1965, Enzymatic basis of the respiratory stimulation during phagocytosis, Nature 204: 255–257.Google Scholar
  52. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257: 7847–7851.PubMedGoogle Scholar
  53. Castranova, V., Jones, G. S., Phillips, R. M., Peden, D., and van Dyke, K., 1981, Abnormal responses of granulocytes in chronic granulomatous disease. Biochim, Biophys. Acta 645: 49–53.Google Scholar
  54. Chaudhry, A. N., Santinga, J. T., and Gabig, T. G., 1982, The subcellular particulate NADPH-dependent O2-generating oxidase from human blood monocytes: Comparison to the neutrophil system, Blood 60: 979–983.PubMedGoogle Scholar
  55. Cheson, B. D., Christensen, R. L., Sperling, R., Kohler, B. E., and Babior, B. M., 1976, The origin of the chemiluminescence of phagocytising granulocytes, J. Clin Invest. 58: 789–796.PubMedGoogle Scholar
  56. Cheson, B. D., Curnutte, J. T., and Babior, B. M., 1977, The oxidative killing mechanism of the neutrophil, Prog. Clin. Immunol. 3: 1–65.PubMedGoogle Scholar
  57. Clark, R. A., and Klebanoff, S. J., 1978, Chronic granulomatous disease: Studies of a family with impaired neutrophil chemotactic, metabolic and bactericidal function, Am. J. Med. 65: 941–948.PubMedGoogle Scholar
  58. Cohen, H. J., Chovaniec, M. E., and Davies, W. A., 1980a, Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: Localization in a plasma membrane enriched particle and kinetics of activation, Blood 55: 355–363.PubMedGoogle Scholar
  59. Cohen, H. J., Newburger, P. E., and Chovaniec, M. E., 1980b, NAD(P)H-dependent superoxide production by phagocytic vesicles from guinea pig and human granulocytes, J. Biol. Chem. 255: 6584–6588.PubMedGoogle Scholar
  60. Cohen, H. J., Newburger, P. E., Chovaniec, M. E., Whitin, J. C., and Simons, E. R., 1981, Opsonized zymosan-stimulated granulocytes—Activation and activity of the superoxide-generating system and membrane potential changes, Blood 58: 975–982.PubMedGoogle Scholar
  61. Cohen, H. J., Chovaniec, M. E., Wilson, M. K., and Newburger, P. E., 1982, Con-Astimulated superoxide production by granulocytes: Reversible activation of NADPH oxidase, Blood 60: 1188–1194.PubMedGoogle Scholar
  62. Cooper, M. R., DeChatelet, L. R., McCall, C. E., La Via, M. F., Spurr, C. L., and Baehner, R. L., 1972, Complete deficiency of leukocyte glucose-6-phosphate dehydrogenase with defective bactericidal activity, J. Clin. Invest. 51: 769–778.PubMedGoogle Scholar
  63. Corberand, J., de Larrard, B., Vergnes, H., and Carriere, J.-P., 1978, Chronic granuloma-tous disease with leukocytic glucose-6-phosphate dehydrogenase deficiency in a 28month-old girl, Am. J. Clin. Pathol. 70: 296–300.PubMedGoogle Scholar
  64. Cox, J. A., Jeng, A. Y., Sharkey, N. A., Blumberg, P. M., and Tauber, A. I., 1985, Activation of the human neutrophil nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase by protein kinase C, J. Clin. Invest. 76: 1932–1938.PubMedGoogle Scholar
  65. Crawford, D. R., and Schneider, D. L., 1982, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257: 6662–6668.PubMedGoogle Scholar
  66. Crawford, D. R., and Schneider, D. L., 1983, Ubiquinone content and respiratory burst activity of latex-filled phagolysosomes isolated from human neutrophils and evidence for the probable involvement of a third granule, J. Bio!. Chem. 258: 5363–5367.Google Scholar
  67. Cross, A. R., Jones, O. T. G., Harper, A. M., and Segal, A. W., 1981, Oxidation—reduction properties of the cytochrome b found in the plasma membrane fraction of human neutrophils: A possible oxidase in the respiratory burst, Biochem. J. 194: 599–606.PubMedGoogle Scholar
  68. Cross, A. R., Higson, F. R., Jones, O. T. G., Harper, A. M., and Segal, A. W., 1982a, The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils, Biochem. J. 204: 479–485.Google Scholar
  69. Cross, A. R., Jones, O. T. G., Garcia, R., and Segal, A. W., 1982b, The association of FAD with the cytochrome b-245 of human neutrophils, Biochem. J. 208: 759–763.PubMedGoogle Scholar
  70. Cross, A. R., Parkinson, J. F., and Jones, O. T. G., 1984, The superoxide-generating oxidase of leucocytes, Biochem. J. 223: 337–344.PubMedGoogle Scholar
  71. Cross, A. R., Parkinson, J. F., and Jones, O. T. G., 1985, Mechanism of the superoxide-producing oxidase of neutrophils, Biochem. J. 226: 881–884.PubMedGoogle Scholar
  72. Crowley, C. A., Curnutte, J. T., Rosin, R. E., André-Schwartz, J., Gallin, J. I., Klempner, M., Snyderman, R., Southwick, F. S., Stossel, T. P., and Babior, B. M., 1980, An inherited abnormality of neutrophil adhesion, N. Engl. J. Med. 302: 1163–1168.PubMedGoogle Scholar
  73. Cunningham, C. C., DeChatelet, L. R., Spach, P. I., Parce, J. W., Thomas, M. J., Lees, C. J., and Shirley, P. S., 1982, Identification and quantitation of electron-transport components in human polymorphonuclear neutrophils, Biochim. Biophys. Acta 682: 430–435.PubMedGoogle Scholar
  74. Curnutte, J. T., 1985, Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell-free system, J. Clin. Invest. 75: 1740–1743.PubMedGoogle Scholar
  75. Curnutte, J. T., and Tauber, A. I., 1983, Failure to detect superoxide in human neutrophils stimulated with latex particles, Pediatr. Res. 17: 281–284.PubMedGoogle Scholar
  76. Curnutte, J. T., Whitten, D. M., and Babior, B. M., 1974, Defective superoxide production by granulocytes from patients with chronic granulomatous disease, N. Eng!. J. Med. 290: 593–597.Google Scholar
  77. Curnutte, J. T., Kipnes, R. S., and Babior, B. M., 1975, Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease, N. Eng!. J. Med. 293: 628–632.Google Scholar
  78. Curnutte, J. T., Karnovsky, M. L., and Babior, B. M., 1976, Manganese-dependent NADPH oxidation by granulocyte particles, J. Clin. Invest. 57: 1059–1067.PubMedGoogle Scholar
  79. Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979, Fluoride-mediated activation of the respiratory burst in human neutrophils, J. Clin. Invest. 63: 637–647.PubMedGoogle Scholar
  80. Curnutte, J. T., Badwey, J. A., Robinson, J. M., Karnovsky, M. J., and Karnovsky, M. L., 1984a, Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate, J. Bio!. Chem. 259: 11851–11857.Google Scholar
  81. Curnutte, J. T., Mayo, L. A., and Boxer, L. A., 1984b, Activation of the human neutrophil respiratory burst without translocation of specific granule constituents, Blood 64: 66a.Google Scholar
  82. Curnutte, J. T., Scott, P. J., and Shurin, S. B., 1985, Defective neutrophil respiratory burst activation due to a deficiency of the activation cofactor for NADPH oxidase, Blood 66: 77a.Google Scholar
  83. Curnutte, J. T., Scott, P. J., Kuver, R., and Berkow, R., 1986, NADPH oxidase activation cofactor (ACF): Partial purification and absent activity in a patient with chronic granulomatous disease (CGD), Clin. Res. 34: 455a.Google Scholar
  84. D’Amelio, R., Bellavite, P., Bianco, P., de Sole, P., le Moli, S., Lippa. S., Seminara, R., Vercelli, B., Rossi, F., Rocchi, G., and Aiuti, F., 1984, Chronic granulomatous disease in two sisters, J. Clin. Immunol. 4: 220–227.PubMedGoogle Scholar
  85. Dana, N., Todd III, R. F., Pitt, J., Springer, T. A., and Arnaout, M. A., 1984, Deficiency of a surface membrane glycoprotein (Mol) in man, J. Clin. Invest. 73: 153–159.PubMedGoogle Scholar
  86. DeChatelet, L. R., Shirley, P. S., and McPhail, L. C., 1976, Normal leukocyte glutathione peroxidase activity in patients with chronic granulomatous disease, J. Pediatr. 89: 598–600.PubMedGoogle Scholar
  87. Densen, P., Wilkinson-Kroovand, S., Mandell, G. L., Sullivan, G., Oyen, R., and Marsh, W. L., 1981, Kx: Its relationship to chronic granulomatous disease and genetic linkage with Xg, Blood 58: 34–37.PubMedGoogle Scholar
  88. Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., 1979, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin. Invest. 63: 21–29.PubMedGoogle Scholar
  89. Dilworth, J. A., and Mandell, G. L., 1977, Adults with chronic granulomatous disease of “childhood”, Am. J. Med. 63: 233–243.PubMedGoogle Scholar
  90. Donowitz, G. R., and Mandell, G. L., 1982, Monocyte function in patients with chronic granulomatous disease of childhood, Blood 60: 1151–1158.PubMedGoogle Scholar
  91. Doussiere, J., and Vignais, P. V., 1985, Purification and properties of an 02-generating oxidase from bovine polymorphonuclear neutrophils, Biochemistry 24: 7231–7239.PubMedGoogle Scholar
  92. Edelson, P. J., Stites, D. P., Gold, S., and Fudenberg, H. H., 1973, Disorders of neutrophil function: Defects in the early stages of the phagocytic process, Clin. Exp. Immunol. 13: 21–28.PubMedGoogle Scholar
  93. Elgefors, B., Oiling, S., and Pelirson, H., 1978, Chronic granulomatous disease in three siblings, Scand. J. Infect. Dis. 10: 79–85.PubMedGoogle Scholar
  94. Feinmark, S. J., Udn, A.-M., Palmblad, J., and Malmsten, C., 1983, Leukotriene biosynthesis by polymorphonuclear leukocytes from two patients with chronic granulomatous disease, J. Clin. Invest. 72: 1839–1843.PubMedGoogle Scholar
  95. Fielden, E. M., Roberts, P. B., Bray, R. C., Lowe, D. T., Mautner, G. N., Rotilio, G., and Calabrese, L., 1974, The mechanism of action of superoxide dismutase from pulse radiolysis and electron paramagnetic resonance, Biochem. J. 139: 49–60.PubMedGoogle Scholar
  96. Fikrig, S. M., Smithwick, E. M., Suntharalingam, K., and Good, R. A., 1980, Fibroblast nitroblue tetrazolium test and the in-utero diagnosis of chronic granulomatous disease, Lancet, 1: 18–19.PubMedGoogle Scholar
  97. Finkelstein, E., Rosen, G. M., and Rauckman, E. J., 1979, Spin trapping of superoxide, Mol. Pharmacol. 16: 676–685.PubMedGoogle Scholar
  98. Francke, U., 1984, Random X inactivation resulting in mosaic nullisomy of region Xp21.1 —* p21.3 associated with heterozygosity for ornithine transcarbamylase deficiency and for chronic granulomatous disease, Cytogenet. Cell Genet. 38: 298–307.PubMedGoogle Scholar
  99. Francke, U., Ochs, H. D., deMartinville, B., Giacalone, J., Lindgren, V., Disteche, C., Pagon, R. A., Hofker, M. H., van Ommen, G.-J. B., Pearson, P. L., and Wedgwood, R. J., 1985, Minor Xp21 chromosome deletion in a male associated with expression of Duchenne muscular dystrophy, chronic granulomatous disease, retinitis pigmentosa, and McLeod syndrome, Am. J. Hum. Genet. 37: 250–267.PubMedGoogle Scholar
  100. Gabig, T. G., 1983, The NADPH-dependent 02-generating oxidase from human neutrophils, J. Biol. Chem. 258: 6352–6356.PubMedGoogle Scholar
  101. Gabig, T. G., and Babior, B. M., 1979, The 02-forming oxidase responsible for the respiratory burst in human neutrophils: Properties of the solubilized enzyme, J. Biol. Chem. 254: 9070–9074.PubMedGoogle Scholar
  102. Gabig, T. G., and Lefker, B. A., 1984, Deficient flavoprotein component of the NADPHdependent Oz-generating oxidase in the neutrophils from three male patients with chronic granulomatous disease, J. Clin. Invest. 73: 701–705.Google Scholar
  103. Gabig, T. G., and Lefker, B. A., 1985, Activation of the human neutrophil NADPH oxidase results in coupling of electron carrier function between ubiquinone-10 and cytochrome b559, J. Biol. Chem. 260: 3991–3995.PubMedGoogle Scholar
  104. Gabig, T. G., Kipnes, R. S., and Babior, B. M., 1978, Solubilization of the 02-forming activity responsible for the respiratory burst in human neutrophils, J. Biol. Chem. 253: 6663–6665.PubMedGoogle Scholar
  105. Gabig, T. G., Bearman, S. I., and Babior, B. M., 1979, Effects of oxygen tension and pH on the respiratory burst of human neutrophils, Blood 53: 1133–1139.PubMedGoogle Scholar
  106. Gabig, T. G., Schervish, E. W., and Santinga, J. T., 1982, Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils, J. Biol. Chem. 257: 4114–4119.PubMedGoogle Scholar
  107. Gaither, T. A., Gallin, J. I., lida, K., Nussenzweig, V., and Frank, M. M., 1984, Deficiency in Cab receptors on neutrophils of patients with chronic granulomatous disease and hyperimmunoglobulin-E recurrent infection (Job’s) syndrome, Inflammation 8: 429–444.PubMedGoogle Scholar
  108. Gallin, J. I., Buescher, E. S., Seligmann, B. E., Nath, J., Gaither, T., and Katz, P., 1983, Recent advances in chronic granulomatous disease, Ann. Im. Med. 99: 657–674.Google Scholar
  109. Gerard, C., McPhail, L. C., Marfat, A., Stimler-Gerard, N. P., Bass, D. A., and McCall, C. E., 1986, Role of protein kinases in stimulation of human polymorphonuclear leukocyte oxidative metabolism by various agonists, J. Clin. Invest. 77: 61–65.PubMedGoogle Scholar
  110. Giblett, E. R., Klebanoff, S. J., Pincus, S. H., Swanson, J., Park, B. H., and McCullough, J., 1971, Kell phenotypes in chronic granulomatous disease: A potential transfusion hazard. (Letter), Lancet 1: 1235.PubMedGoogle Scholar
  111. Gilman, A. G., 1984, G proteins and dual control of adenylate cyclase, Cell 36: 577–579.PubMedGoogle Scholar
  112. Glass, G. A., Marken, M., DeLisle, D. M., and Babior, B. M., 1984, Properties of purified 02-forming enzyme from human neutrophils, Blood (Suppl.) 1: 86a.Google Scholar
  113. Gold, S. B., Hanes, D. M., Stites, D. P., and Fudenberg, H. H., 1974, Abnormal kinetics of degranulation in chronic granulomatous disease, N. Engl. J. Med. 291: 332–337.PubMedGoogle Scholar
  114. Goudemand, J., Aussens, R., Delmas-Marsalet, Y., Farriaux, J. P., and Fontaine, G., 1976, Attempt to treat a case of chronic familial granulomatous disease by allogenic bone marrow transplantation, Arch. Fr. Pediatr. 33: 121–129.PubMedGoogle Scholar
  115. Graf, E., Mahoney, J. R., Bryant, R. G., and Eaton, J. W., 1984, Iron-catalyzed hydroxyl radical formation, J. Biol. Chem. 259: 3620–3624.PubMedGoogle Scholar
  116. Gray, G. R., Klebanoff, S. J., Stamatoyannopoulos, G., Austin, T., Naiman, S. C., Yoshida, A., Kliman, M. R., and Robinson, G. C. F., 1973, Neutrophil dysfunction, chronic granulomatous disease, and non-spherocytic haemolytic anaemia caused by complete deficiency of glucose-6-phosphate dehydrogenase, Lancet 11: 530–534.Google Scholar
  117. Green, M. R., Hill, H. A. O., Okolow-Zubkowska, M. J., and Segal, A. W., 1979, The production of hydroxyl and superoxide radicals by stimulated human neutrophilsMeasurement by EPR spectroscopy, FEBS Lett. 100: 23–26.PubMedGoogle Scholar
  118. Green, T. R., Wu, D. E., and Wirtz, M. K., 1983, The 02- generating oxidoreductase of human neutrophils: Evidence of an obligatory requirement for calcium and magnesium for expression of catalytic activity, Biochem. Biophys. Res. Commun. 110: 973–978.PubMedGoogle Scholar
  119. Grinstein, S., Furuya, W., and Biggar, W. D., 1986, Cytoplasmic pH regulation in normal and abnormal neutrophils, J. Biol. Chem. 261: 512–514.PubMedGoogle Scholar
  120. Haber, F., and Weiss, J., 1934. The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Edinburgh A (Math. Phys. Sci.) 147: 332–334.Google Scholar
  121. Hamers, M. N., deBoer, M., Meerhof, L. J., Weening, R. S., and Roos, D., 1984, Corn-plementation in monocyte hybrids revealing genetic heterogeneity in chronic granulomatous disease, Nature 307: 553–555.PubMedGoogle Scholar
  122. Harper, A. M., Dunne, M. J., and Segal, A. W., 1984, Purification of cytochrome b-245 from human neutrophils, Biochem. J. 219: 519–527.PubMedGoogle Scholar
  123. Harper, A. M., Chaplin, M. F., and Segal, A. W., 1985, Cytochrome b-245 from human neutrophils is a glycoprotein, Biochem. J. 227: 783–788.PubMedGoogle Scholar
  124. Harvath, L., and Andersen, B. R., 1979, Defective initiation of oxidative metabolism in polymorphonuclear leukocytes, N. Engl. J. Med. 300: 1130–1135.PubMedGoogle Scholar
  125. Hayakawa, T., Suzuki, K., Suzuki, S., Andrews, P. C., and Babior, B. M., 1986, A possible role for protein phosphorylation in the activation of the respiratory burst in human neutrophils. Evidence from studies with cells from patients with chronic granulomatous disease, J. Biol. Chem. 261: 9109–9115.PubMedGoogle Scholar
  126. Henderson, W. R., and Klebanoff, S. J., 1983, Leukotriene production and inactivation by normal, chronic granulomatous disease and myeloperoxidase-deficient neutrophils, J. Biol. Chem. 258: 13522–13527.PubMedGoogle Scholar
  127. Herlin, T., and Borregaard, N., 1983, Early changes in cyclic AMP and calcium efflux during phagocytosis by neutrophils from normals and patients with chronic granulomatous disease, Immunology 48: 17–26.PubMedGoogle Scholar
  128. Heyneman, R. A., and Vercauteren, R. E., 1984, Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system, J. Leukocyte Biol. 36: 75, 1759.Google Scholar
  129. Higson, F. K., Durbin, L., Pavlotsky, N., and Tauber, A. I., 1985, Studies of cytochrome b-245 translocation in the PMA stimulation of the human neutrophil NADPH-oxidase, J. Immunol. 135: 519–524.PubMedGoogle Scholar
  130. Hohn, D. C., and Lehrer, R. I., 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55: 707–713.PubMedGoogle Scholar
  131. Holmes, B., Quie, P. G., Windhorst, D. B., and Good, R. A., 1966, Fatal granulomatous disease of childhood: An inborn abnormality of phagocytic function, Lancet 1: 1225–1128.PubMedGoogle Scholar
  132. Holmes, B., Page, A. R., and Good, R. A., 1967, Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function, J. Clin. Invest. 46: 1422–1432.PubMedGoogle Scholar
  133. Iizuka, T., Kanegasaki, S., Makino, R., Tanaka, T., and Ishimura, Y., 1985a, Studies on neutrophil b-type cytochrome in situ by low temperature absorption spectroscopy, J. Biol. Chem. 260: 12049–12053.PubMedGoogle Scholar
  134. Iizuka, T., Kanegasaki, S., Makino, R., Tanaka, T., and Ishimura, Y., 1985b, Pyridine and imidazole reversibly inhibit the respiratory burst in porcine and human neutrophils: Evidence for the involvement of cytochrome b558 in the reaction, Biochem. Biophys. Res. Commun. 130: 621–626.PubMedGoogle Scholar
  135. Irita, K., Takeshige, K., and Minakami, S., 1984, Protein phosphorylation in intact pig leukocytes, Biochem. Biophys. Acta. 805: 44–52.PubMedGoogle Scholar
  136. Ismail, G., Boxer, L. A., and Baehner, R. L., 1979, Utilization of liposomes for correction of the metabolic and bactericidal deficiencies in chronic granulomatous disease, Pediatr. Res. 13: 769–773.PubMedGoogle Scholar
  137. Ito, K., Mukamoto, Y., Konishi, H., Sakura, N., and Usui, T., 1979, Kell phenotypes in 15 Japanese patients with chronic granulomatous disease, Vox Sang. 37: 39–40.PubMedGoogle Scholar
  138. Iyer, G. Y. N., and Quastel, J. H., 1963, NADPH and NADH oxidation by guinea pig polymorphonuclear leucocytes, Can. J. Biochem. Physiol. 41: 427–434.PubMedGoogle Scholar
  139. Jacobs, R. F., and Wilson, C. B., 1983, Activity of antibiotics in chronic granulomatous disease leukocytes, Pediatr. Res. 17: 916–919.PubMedGoogle Scholar
  140. Johnston Jr., R. B., and Newman, S. L., 1977, Chronic granulomatous disease. Pediatr. Clin. North Am. 24: 365–376.Google Scholar
  141. Jones, H. P., Ghai, G., Petrone, W. F., and McCord, J. M., 1982, Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils, Biochim. Biophys. Acta 714: 152–156.PubMedGoogle Scholar
  142. Kakinuma, K., and Kaneda, M., 1982, Apparent K,,, of leukocyte OZ- and H202 forming enzyme for oxygen, in: Biochemistry and Function of Phagocytes ( F. Rossi and P. Patriarca, eds.), pp. 351–360, Plenum Press, London.Google Scholar
  143. Karnovsky, M. L., 1973, Chronic granulomatous disease—Pieces of a cellular and molecular puzzle, Fed. Proc. 32: 1527–1533.PubMedGoogle Scholar
  144. Kauder, E., Kahle, L. L., Moreno, H., and Partin, J. C., 1968, Leukocyte degranulation and vacuole formation in patients with chronic granulomatous disease of childhood, J. Clin. Invest. 47: 1753–1762.PubMedGoogle Scholar
  145. Kemp, A. S., Lo, E., Vernon, J., Robertson, S. E. J., and Penny, R., 1984, Decreased neutrophil chemotaxis and chronic granulomatous disease, Aust. Paediatr, J. 20: 119121.Google Scholar
  146. Kitahara, M., Eyre, H. J., Simonian, Y., Atkin, C. L., and Hasstedt, S. J., 1981, Hereditary myeloperoxidase deficiency, Blood 57: 888–893.PubMedGoogle Scholar
  147. Klebanoff, S. J., 1968, Myeloperoxidase-halide-hydrogen peroxide antibacterial system, J. Bacteriol. 95: 2131–2138.PubMedGoogle Scholar
  148. Klebanoff, S. J., and Rosen, H., 1978, Ethylene formation by polymorphonuclear leukocytes, J. Exp. Med. 148: 490–506.PubMedGoogle Scholar
  149. Koo, C., Lefkowitz, R. J., and Snyderman, R., 1983, Guanine nucleotides modulate the binding affinity of the oligopeptide chemoattractant receptor on human polymorphonuclear leukocytes, J. Clin. Invest. 72: 748–753.PubMedGoogle Scholar
  150. Korchak, H. M., Roos, D., Giedd, K. N., Wynkoop, E. M., Vienne, K., Rutherford, L. E., Buyon, J. P., Rich, A. M., and Weissmann, G., 1983, Granulocytes without de-granulation: Neutrophil function in granule-depleted cytoplasts, Proc. Natl. Acad. Sci. USA 80: 4968–4972.PubMedGoogle Scholar
  151. Kousseff, B., 1981, Linkage between chronic granulomatous disease and Duchenne’s muscular dystrophy? Am. J. Dis. Child. 135: 1149.PubMedGoogle Scholar
  152. Krause, K.-H., Schlegel, W., Wollheim, C. B., Andersson, T., Waldvogel, F. A., and Lew, P. D., 1985, Chemotactic peptide activation of human neutrophils and HL-60 cells: Pertussis toxin reveals correlation between inositol trisphosphate generation, calcium ion transients, and cellular activation, J. Clin. Invest. 76: 1348–1354.PubMedGoogle Scholar
  153. Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48: 1478–1488.PubMedGoogle Scholar
  154. Lehrer, R. I., Hanifin, J., and Cline, M. J., 1969, Defective bactericidal activity in myeloperoxidase-deficient human neutrophils, Nature 223: 78–79.PubMedGoogle Scholar
  155. Lew, P. D., Southwick, F. S., Stossel, T. P., Whitin, J. C., Simons, E., and Cohen, H. J., 1981, A variant of chronic granulomatous disease: Deficient oxidative metabolism due to a low-affinity NADPH oxidase, N. Engl. J. Med. 305: 1329–1333.PubMedGoogle Scholar
  156. Lew, P. D., Wollheim, C., Seger, R. A., and Pozzan, T., 1984, Cytosolic free calcium changes induced by chemotactic peptide in neutrophils from patients with chronic granulomatous disease, Blood 63: 231–233.PubMedGoogle Scholar
  157. Light, D. R., Walsh, C. O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. I., 1981, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes, Biochemistry 20: 1468–1476.PubMedGoogle Scholar
  158. Lutter, R., van Zwieten, R., Weening, R. S., Hamers, M. N., and Roos, D., 1984, Cyto-chrome b, flavins and ubiquinone-50 in enucleated human neutrophils (PMN cytoplasts), J. Biol. Chem. 259: 9603–9606.PubMedGoogle Scholar
  159. Lutter, R., van Schaik, M. L. J., van Zwieten, R., Weyer, R., Roos, D., and Hamers, M. N., 1985, Purification and partial characterization of the b-type cytochrome from human polymorphonuclear leukocytes, J. Biol. Chem. 260: 2237–2244.PubMedGoogle Scholar
  160. Lyon, M. F., 1962, Sex chromatin and gene action in the mammalian X-chromosome, Am. J. Hum. Genet. 14: 135–148.PubMedGoogle Scholar
  161. Mandell, G. L., and Hook, E. W., 1969, Leukocyte function in chronic granulomatous disease of childhood: Studies on a 17-year-old boy, Am. J. Med. 47: 473–486.PubMedGoogle Scholar
  162. Markert, M., Glass, G. A., and Babior, B. M., 1985, Respiratory burst oxidase from human neutrophils: Purification and some properties, Proc. Natl. Acad. Sci. USA 82: 3144–3148.PubMedGoogle Scholar
  163. Marsh, W. L., 1978, Chronic granulomatous disease, the McLeod syndrome, and the Kell blood groups, Birth Defects 14: 9–25.PubMedGoogle Scholar
  164. Marsh, W. L., Oyen, R., Nichols, M. E., and Allen, F. H., 1975, Chronic granulomatous disease and the Kell blood groups, Br. J. Haematol. 29: 247–262.PubMedGoogle Scholar
  165. Marsh, W. L., Oyen, R., and Nichols, M. E., 1976, Kx antigen, the McLeod phenotype, and chronic granulomatous disease: Further studies, Vox Sang. 31: 356–362.PubMedGoogle Scholar
  166. Marsh, W. L., Marsh, N. J., Moore, A., Symmans, W. A., Johnson, C. L., and Redman, C. M., 1981, Elevated serum creatine phosphokinase in subjects with McLeod syndrome, Vox Sang. 40: 403–411.Google Scholar
  167. Matheson, N. R., Wong, P. S., and Travis, J., 1981, Isolation and properties of human neutrophil myeloperoxidase, Biochemistry 20: 325–330.PubMedGoogle Scholar
  168. Matthay, K. K., Golbus, M. S., Wara, D. W., and Mentzer, W. C., 1984, Prenatal diagnosis of chronic granulomatous disease, Am. J. Med. Genet. 17: 731–739.PubMedGoogle Scholar
  169. McClune, G. J., and Fee, J. A., 1976, Stopped flow spectrophotometric observation of superoxide dismutation in aqueous solution, FEBS Lett. 67: 294–298.PubMedGoogle Scholar
  170. McCord, J. M., and Day, Jr., E. D., 1978, Superoxide-dependent production of hydroxyl radical catalyzed by iron—EDTA complex, FEBS Lett. 86: 139–142.PubMedGoogle Scholar
  171. McPhail, L. C., Shirley, P. S., Clayton, C. C., and Snyderman, R., 1985, Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: Evidence for a soluble cofactor, J. Clin. Invest. 75: 1735–1739.PubMedGoogle Scholar
  172. Melloni, E., Pontremoli, S., Michetti, M., Sacco, O., Sparatore, B., Salamino, F., and Horecker, B. L., 1985, Binding of protein kinase C to neutrophil membranes in the presence of Ca’ and its activation by a Ca’-requiring proteinase, Proc. Natl. Acad. Sci. USA 82: 6435–6439.PubMedGoogle Scholar
  173. Mendelsohn, H. B., Berant, M., and Merzbach, D., 1983, Antibacterial prophylaxis in chronic granulomatous disease: A case report, Isr. J. Med. Sci. 19: 1004–1005.PubMedGoogle Scholar
  174. Mennuti, M. T., 1977, Prenatal genetic diagnosis: Current status, N. Engl. J. Med. 297: 1004–1006.PubMedGoogle Scholar
  175. Millard, J. A., Gerard, K. W., and Schneider, D. L., 1979, The isolation from rat peritoneal leukocytes of plasma-membrane enriched in alkaline phosphatase and a b-type cytochrome, Biochem. Biophys. Res. Commun. 90: 312–319.PubMedGoogle Scholar
  176. Mills, E. L., Rholl, K. S., and Quie, P. G., 1980, X-linked inheritance in females with chronic granulomatous disease, J. Clin. Invest. 66: 332–340.PubMedGoogle Scholar
  177. Mollinedo, F., and Schneider, D. L., 1984, Subcellular localization of cytochrome b and ubiquinone in a tertiary granule of resting human neutrophils and evidence for a proton pump ATPase, J. Biol. Chem. 259: 7143–7150.Google Scholar
  178. Molski, T. F. P., Naccache, P. H., Marsh, M. L., Kermode, J., Becker, E. L., and Sha’afi, R. I., 1984, Pertussis toxin inhibits the rise in the intracellular concentration of free calcium that is induced by chemotactic factors in rabbit neutrophils: Possible role of the “G proteins” in calcium mobilization, Biochem. Biophys. Res. Commun. 124: 644–650.PubMedGoogle Scholar
  179. Morel, F., and Vignais, P. V., 1984, Examination of the oxidase function of the b-type cytochrome in human polymorphonuclear leukocytes, Biochim. Biophys. Acta 764: 213–225.PubMedGoogle Scholar
  180. Morel, F., Doussiere, J., Stasia, M.-J., and Vignais, P. V., 1985, The respiratory burst of bovine neutrophils: Role of a b-type cytochrome and coenzyme specificity, Eur. J. Biochem. 152: 669–679.PubMedGoogle Scholar
  181. Naskalski, J. W., 1977, Myeloperoxidase inactivation in the course of catalysis of chlorination of taurine, Biochim. Biophys. Acta 485: 291–300.PubMedGoogle Scholar
  182. Nathan, D. G., Baehner, R. L., and Weaver, D. K., 1969, Failure of nitro blue tetrazolium reduction in the phagocytic vacuoles of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48: 1895–1904.PubMedGoogle Scholar
  183. Newburger, P. E., and Tauber, A. I., 1982, Heterogeneous pathways of oxidizing radical production in human neutrophils and the HL-60 cell line, Pediatr. Res. 16: 856–860.PubMedGoogle Scholar
  184. Newburger, P. E., Cohen, H. J., Rothchild, S. B., Hobbins, J. C., Malawista, S. E., and Mahoney, M. J., 1979, Prenatal diagnosis of chronic granulomatous disease, N. Engl. J. Med. 300: 178–181.PubMedGoogle Scholar
  185. Newburger, P. E., Robinson, J. M., Pryzwansky, K. B., Rosoff, P. M., Greenberger, J. S., and Tauber, A. I., 1983, Human neutrophil dysfunction with giant granules and defective activation of the respiratory burst, Blood 61: 1247–1257.Google Scholar
  186. Ochs, H. D., and Igo, R. P., 1973, The NBT slide test: A simple screening method for detecting chronic granulomatous disease and female carriers, J. Pediatr. 83: 77–82.PubMedGoogle Scholar
  187. Okajima, F., and Ui, M., 1984, ADP-ribosylation of the specific membrane protein by islet-activating protein, pertussis toxin, associated with inhibition of a chemotactic peptide-induced arachidonate release in neutrophils: A possible role of the toxin substrate in Cat -mobilizing biosignaling, J. Biol. Chem. 259: 13863–13871.PubMedGoogle Scholar
  188. Okajima, F., Katada, T., and Ui, M., 1985, Coupling of the guanine nucleotide regulatory protein to chemotactic peptide receptors in neutrophil membranes and its uncoupling by islet-activating protein, pertussis toxin, J. Biol. Chem. 260: 6761–6768.PubMedGoogle Scholar
  189. Okamura, N., Ohashi, S., Nagahisa, N., and Ishibashi, S., 1984, Changes in protein phosphorylation in guinea pig polymorphonuclear leukocytes by treatment with membrane-perturbing agents which stimulate superoxide anion production, Arch. Biochem. Biophys. 228: 270–277.PubMedGoogle Scholar
  190. Olofsson, T., and Olsson, I., 1977, Purification of human granulocyte catalase in chronic myeloid leukemia, Biochim. Biophys. Acta 482: 301–308.PubMedGoogle Scholar
  191. Papini, E., Grzeskowiak, M., Bellavite, P., and Rossi, F., 1985, Protein kinase C phosphorylates a component of NADPH oxidase of neutrophils, FEBS Lett. 190: 204–208.PubMedGoogle Scholar
  192. Parry, M. F., Root, R. K., Metcalf, J. A., Delaney, K. K., Kaplow, L. S., and Richar, W. J., 1981, Myeloperoxidase deficiency: Prevalence and clinical significance, Ann. Int. Med. 95: 293–301.PubMedGoogle Scholar
  193. Patriarca, P., Dri, P., Kakinuma, K., Tedesco, F., and Rossi, F., 1975, Studies on the mechanism of metabolic stimulation in polymorphonuclear leucocytes during phagocytosis. I. Evidence for superoxide anion involvement in the oxidation of NADPH2, Biochim. Biophys. Acta 385: 380–386.PubMedGoogle Scholar
  194. Pember, S. O., Heyl, B. L., Kinkade, Jr., J. M., and Lambeth, J. D., 1984, Cytochrome b558 from (bovine) granulocytes: Partial purification from Triton X-114 extracts and properties of the isolated cytochrome, J. Biol. Chem. 259: 10590–10595.PubMedGoogle Scholar
  195. Pozzan, T., Lew, P. D., Wollheim, C. B., and Tsien, R. Y., 1983, Is cytosolic ionized calcium regulating neutrophil activation? Science 221: 1413–1415.PubMedGoogle Scholar
  196. Prentki, M., Wollheim, C. B., and Lew, P. D., 1984, Ca’ homeostasis in permeabilized human neutrophils: Characterization of Ca-sequestering pools and the action of inositol 1,4,5-trisphosphate, J. Biol. Chem. 259: 13777–13782.PubMedGoogle Scholar
  197. Pryor, W. A., and Tang, R. H., 1978, Ethylene formation from methional, Biochem. Biophy s. Res. Commun. 81: 498–503.Google Scholar
  198. Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood. J. Clin. Invest. 46: 668–679.Google Scholar
  199. Rappeport, J. M., Newburger, P. E., Goldblum, R. M., Goldman. A. S., Nathan, D. G., and Parkman, R., 1982, Allogeneic bone marrow transplantation for chronic granulomatous disease, J. Pediatr. 101: 952–955.Google Scholar
  200. Reed, P. W., 1969, Gluathione and the hexose monophosphate shunt in phagocytizing and hydrogen peroxide-treated rat leukocytes, J. Biol. Chem. 244: 2459–2464.PubMedGoogle Scholar
  201. Repine, J. E., Clawson, C. C., White, J. G., and Holmes, B., 1975, Spectrum of function of neutrophils from carriers of sex-linked chronic granulomatous disease, J. Pediatr. 87: 901–907.PubMedGoogle Scholar
  202. Repine, J. E., Eaton, J. W., Anders, M. W., Hoidal, J. R., and Fox, R. B., 1979, Generation of hydroxyl radical by enzymes, chemicals, and human phagocytes in vitro: Detection with the anti-inflammatory agent, dimethyl sulfoxide, J. Clin. Invest. 64: 1642–1651.PubMedGoogle Scholar
  203. Root, R. K., and Metcalf, J. A., 1977, H2O2 release from human granulocytes during phagocytosis: Relationship to superoxide anion formation and cellular catabolism of H2O2: Studies with normal and cytochalasin B treated cells, J. Clin. Invest. 60: 1266–1279.Google Scholar
  204. Rosen, H., and Klebanoff, S. J., 1976, Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes, J. Clin. Invest. 58: 50–60.PubMedGoogle Scholar
  205. Rosen, H., and Klebanoff, S. J., 1979, Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy, J. Clin. Invest. 64: 1725–1729.PubMedGoogle Scholar
  206. Rossi, F., and Zatti, M., 1964, Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADPH oxidation by the granules of resting and phagocytizing cells, Experientia 20: 21–23.PubMedGoogle Scholar
  207. Royer-Pokora, B., Baehner, R. L., Kunkel, L. M., Monaco, A., Haines, J., Coneally, P. M., Newburger, P. E., and Orkin, S. H., 1985, The chronic granulomatous disease (CGD) locus: Localization on the X-chromosome and cloning of a candidate cDNA, Blood 66: 80a.Google Scholar
  208. Royer-Pokora, B., Kunkel, L. M., Monaco, A. P., Goff, S. C., Newburger, P. E., Baehner, R. L., Cole. F. S., Curnutte, J. T., Orkin, S. H., 1986, Cloning the gene for an inherited human disorder—chronic granulomatous disease—on the basis of its chromosomal location, Nature 322: 32–38.Google Scholar
  209. Salin, M. L., and McCord, J. M., 1974, Superoxide dismutase in polymorphonuclear leukocytes, J. Clin. Invest. 54: 1005–1009.PubMedGoogle Scholar
  210. Sasada, M., Pabst, M. J., and Johnston, Jr., R. B., 1983, Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide-producing NADPH oxidase, J. Biol. Chem. 258: 9631–9635.PubMedGoogle Scholar
  211. Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234: 1355–1362.PubMedGoogle Scholar
  212. Schaller, J., 1972, Illness resembling lupus erythematosus in mothers of boys with chronic granulomatous disease, Ann. Intern. Med. 76: 747–750.PubMedGoogle Scholar
  213. Schneider, C., Zanetti, M., and Romeo, D., 1981, Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127: 4–8.PubMedGoogle Scholar
  214. Segal, A. W., and Jones, O. T. G., 1978, Novel cytochrome b system in phagocytic vacuoles of human granulocytes, Nature 276: 515–517.PubMedGoogle Scholar
  215. Segal, A. W., and Jones, O. T. G., 1979a, Reduction and subsequent oxidation of a cytochrome b of human neutrophils after stimulation with phorbol myristate acetate, Biochem. Biophys. Res. Commun. 88: 130–134.PubMedGoogle Scholar
  216. Segal, A. W., and Jones, O. T. G., 19796, The subcellular distribution and some properties of the cytochrome b component of the microbicidal oxidase system of human neutrophils, Biochem. J. 182: 181–188.Google Scholar
  217. Segal, A. W., and Jones, O. T. G., 1980, Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease, FEBS Lett. 110: 111–114.PubMedGoogle Scholar
  218. Segal, A. W., Jones, O. T. G., Webster, D., and Allison, A. C., 1978, Absence of a newly described cytochrome b from neutrophils of patients with chronic granulomatous disease, Lancet 11: 446–449.Google Scholar
  219. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N., Soothill, J. F., and Jones, O. T. G., 1983, Absence of cytochrome b-245 in chronic granulomatous disease: A multicenter European evaluation of its incidence and relevance, N. Engl. J. Med. 308: 245–251.PubMedGoogle Scholar
  220. Segal, A. W., Heyworth, P. G., Cockcroft, S., and Barrowman, M. M., 1985, Stimulated neutrophils from patients with autosomal recessive chronic granulomatous disease fail to phosphorylate a M,.-44,000 protein, Nature 316: 547–549.PubMedGoogle Scholar
  221. Seger, R., and Steinmann, B., 1981, Prenatal diagnosis of chronic granulomatous disease: Unreliability of fibroblast nitroblue tetrazolium test, Lancet 1: 1216.PubMedGoogle Scholar
  222. Seger, R. A., Tiefenauer, L., Matsunaga, T., Wildfeuer, A., and Newburger, P. E., 1983, Chronic granulomatous disease due to granulocytes with abnormal NADPH oxidase activity and deficient cytochrome-b, Blood 61: 423–428.PubMedGoogle Scholar
  223. Seligmann, B. E., and Gallin, J. I., 1980, Use of lipophilic probes of membrane potential to assess human neutrophil activation: Abnormality in chronic granulomatous disease, J. Clin. Invest. 66: 493–503.PubMedGoogle Scholar
  224. Serhan, C. N., Broekman, M. J., Korchak, H. M., Smolen, J. E., Marcus, A. J., and Weissmann, G., 1983, Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils: Relationship to calcium mobilization, aggregation and superoxide radical generation, Biochim. Biophys. Acta 762: 420–428.Google Scholar
  225. Serra, M. C., Bellavite, P., Davoli, A., Bannister, J. V., and Rossi, F., 1984, Isolation from neutrophil membranes of a complex containing active NADPH oxidase and cytochrome b-245, Biochim. Biophys. Acta 788: 138–146.PubMedGoogle Scholar
  226. Shurin, S. B., Cohen, H. J., Whitin, J. C., and Newburger, P. E., 1983, Impaired granulocyte superoxide production and prolongation of the respiratory burst due to a low-affinity NADPH-dependent oxidase, Blood 62: 564–571.Google Scholar
  227. Sklar, L. A., Jesaitis, A. J., Painter, R. G., and Cochrane, C. G., 1981, The kinetics of neutrophil activation: The response to chemotactic peptides depends upon whether ligand—receptor interaction is rate-limiting, J. Biol. Chem. 256: 9909–9914.PubMedGoogle Scholar
  228. Sloan, E. P., Crawford, D. R., and Schneider, D. L., 1981, Isolation of plasma membrane from human neutrophils and determination of cytochrome b and quinone content, J. Exp. Med. 153: 1316–1328.PubMedGoogle Scholar
  229. Smith, C. D., Lane, B. C., Kisaka, I., Verghese, M. W., and Snyderman, R., 1985, Chemoattractant receptor-induced hydrolysis of phosphatidylinositol 4,5-bisphosphate in human polymorphonuclear leukocyte membranes: Requirement for a guanine nucleotide regulatory protein, J. Biol. Chem. 260: 5875–5878.PubMedGoogle Scholar
  230. Smith, D. M., Walsh, C. E., DeChatelet, L. R., and Waite, M., 1983, Arachidonic acid metabolism in polymorphonuclear leukocytes from patients with chronic granulomatous disease, Infect. Immunity 40: 1230–1233.Google Scholar
  231. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1980, Increased levels of cyclic adenosine-3’,5’-monophosphate in human polymorphonuclear leukocytes after surface stimulation, J. Clin. Invest. 65: 1077–1085.PubMedGoogle Scholar
  232. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1981, The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils, Biochim. Biophys. Acta 677: 512–520.PubMedGoogle Scholar
  233. Snyderman, R., Pike, M. C., and Altman, L. C., 1975, Abnormalities of leukocyte chemotaxis in human disease, Ann. N. Y. Acad. Sci. 256: 386–401.PubMedGoogle Scholar
  234. Speigel, A. M., Gierschik, P., Levine, M. A., and Downs, Jr., R. W., 1985, Clinical implications of guanine nucleotide-binding proteins as receptor-effector couplers, N. Engl. J., Med. 312: 26–33.Google Scholar
  235. Spielberg, S. P., Boxer, L. A., Oliver, J. M., Allen, J. M., and Schulman, J. D., 1979, Oxidative damage to neutrophils in glutathione synthetase deficiency, Br. J. Haematol. 42: 215–223.PubMedGoogle Scholar
  236. Stoic, V., 1979, Characterization of iodoproteins secreted by phagocytosing human polymorphonuclear leukocytes, J. Biol. Chem. 254: 1273–1279.Google Scholar
  237. Stossel, T. P., 1973, Evaluation of opsonic and leukocyte function with a spectrophotometric test in patients with infection and with phagocytic disorders, Blood 42: 121–130.PubMedGoogle Scholar
  238. Stossel, T. P., Root, R. K., and Vaughan, M., 1972, Phagocytosis in chronic granulomatous disease and the Chediak—Higashi syndrome, N. Engl. J. Med. 286: 120–123.PubMedGoogle Scholar
  239. Strauss, R. R., Paul, B. B., Jacobs, A. A., and Sbarra, A. J., 1969, The role of the phagocyte in host—parasite interactions. XIX. Leukocytic glutathione reductase and its involvement in phagocytosis, Arch. Biochem. Biophys. 135: 265–271.PubMedGoogle Scholar
  240. Sullivan, G. W., Donowitz, G. R., Sullivan, J. A., and Mandell, G. L., 1984, Interrelationships of polymorphonuclear neutrophil membrane-bound calcium, membrane potential, and chemiluminescence: Studies in single living cells, Blood 64: 1184–1192.PubMedGoogle Scholar
  241. Suzuki, H., Pabst, M. J., and Johnston, Jr., R. B., 1985, Enhancement by Cat+ or Mgt` of catalytic activity of the superoxide-producing NADPH oxidase in membrane fractions of human neutrophils and monocytes, J. Biol. Chem. 260: 3635–3639.PubMedGoogle Scholar
  242. Suzuki, Y., and Lehrer, R. I., 1980, NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate, J. Clin. Invest. 66: 1409–1418.PubMedGoogle Scholar
  243. Tamoto, K., Washida, N., Yukishige, K., Takayama, H., and Koyama. J., 1983, Electrophoretic isolation of a membrane-bound NADPH oxidase from guinea-pig polymorphonuclear leukocytes, Biochim. Biophys. Acta 732: 569–578.PubMedGoogle Scholar
  244. Tauber, A. I., and Babior, B. M., 1985, Neutrophil oxygen reduction: The enzymes and the products, Adv. Free Radical Biol. Med. 1: 265–307.Google Scholar
  245. Tauber, A. I., and Goetzl, E. J., 1979, Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution, and partial characterization, Biochemistry 18: 5576–5584.PubMedGoogle Scholar
  246. Tauber, A. I., Goetzl, E. J., and Babior, B. M., 1979, Unique characteristics of superoxide production by human neutrophils in eosinophilic states, Inflammation 3: 261–272.PubMedGoogle Scholar
  247. Tauber, A. I., Borregaard, N., Simons, E., and Wright, J., 1983, Chronic granulomatous disease: A syndrome of phagocyte oxidase deficiencies, Medicine 62: 286–309.PubMedGoogle Scholar
  248. Thomas, E. L., 1979a, Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: Nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli, Infect. Immunity 23: 522–531.Google Scholar
  249. Thomas, E. L., 19796, Myeloperoxidase—hydrogen peroxide—chloride antimicrobial system: Effect of exogenous amines on antibacterial action against E. coli, Infect. Immunity 25:110–116.Google Scholar
  250. Verghese, M. W., Smith, C. D., and Snyderman, R., 1985, Potential role for a guanine nucleotide regulatory protein in chemoattractant receptor mediated polyphosphoinositide metabolism, Ca* * mobilization and cellular responses by leukocytes, Biochem. Biophys. Res. Commun. 127: 450–457.PubMedGoogle Scholar
  251. Vives-Corrons, J. L., Feliu, E., Pugades, M. A., Cardellach, F., Rozman, C., Carreras, A., Jou, J. M., Vallespi, M. T., and Zuazu, F. J., 1982, Severe glucose-6-phosphate dehydrogenase (G6PD) deficiency associated with chronic hemolytic anemia, granulocyte dysfunction, and increased susceptibility to infections: Description of a new molecular variant (G6PD Barcelona), Blood 59: 428–434.PubMedGoogle Scholar
  252. Volkman, D. J., Buescher, E. S., Gallin, J. I., and Fauci, A. S., 1984, B cell lines as models for inherited phagocytic diseases: Abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak—Higashi syndrome, J. Immunol. 133: 3006–3009.PubMedGoogle Scholar
  253. Volpi, M., Naccache, P. H., Molski, T. F. P., Shefcyk, J., Huang, C.-K., Marsh, M. L., Munoz, J., Becker, E. L., and Sha’afi, R. I., 1985, Pertussis toxin inhibits fMet-LeuPhe-but not phorbol ester-stimulated changes in rabbit neutrophils: Role of G proteins in excitation response coupling, Proc. Natl. Acad. Sci. USA 82: 2708–2712.PubMedGoogle Scholar
  254. Wakeyama, H., Takeshige, K., Takayanagi, R., and Minakami, S., 1982, Superoxide-forming NADPH oxidase preparation of pig polymorphonuclear leucocyte, Biochem. J. 205: 593–601.PubMedGoogle Scholar
  255. Wakeyama, H., Takeshige, K., and Minakami, S., 1983, NADPH-dependent reduction of 2,6-dichlorophenol-indophenol by the phagocytic vesicles of pig polymorphonuclear leucocytes, Biochem. J. 210: 577–581.PubMedGoogle Scholar
  256. Ward, P. A., and Schlegel, R. J., 1969, Impaired leucotactic responsiveness in a child with recurrent infections, Lancet 11: 344–347.Google Scholar
  257. Weening, R. S., Roos, D., Weemaes, C. M., Homan-Müller, J. W. T., and van Schaik, M. L. J., 1976, Defective initiation of the metabolic stimulation in phagocytizing granulocytes: A new congenital defect, J. Lab. Clin. Med. 88: 757–768.PubMedGoogle Scholar
  258. Weeping, R. S., Corbeel, L., de Boer, M., Lutter, R., van Zwieten, R., Hamers, M. N., and Roos, D., 1985, Cytochrome b deficiency in an autosomal form of chronic granulomatous disease, J. Clin. Invest. 75: 915–920.Google Scholar
  259. Weiss, S. J., Rustagi, P. K., and LoBuglio, A. F., 1978, Human granulocyte generation of hydroxyl radical, J. Exp. Med. 147: 316–323.PubMedGoogle Scholar
  260. Weiss, S. J., Klein, R., Slivka, A., and Wei, M., 1982, Chlorination of taurine by human neutrophils: Evidence for hypochlorous acid generation, J. Clin. Invest. 70: 598–607PubMedGoogle Scholar
  261. Weiss, S. J., Lampert, M. B., and Test, S. T., 1983, Long-lived oxidants generated by human neutrophils: Characterization and bioactivity, Science 222: 625–628.PubMedGoogle Scholar
  262. Westminster Hospital Bone-Marrow Transplant Team, 1977, Bone-marrow transplantation from an unrelated donor for chronic granulomatous disease, Lancet 1: 210–213.Google Scholar
  263. White, J. R., Huang, C.-K, Hill, Jr., J. M., Naccache, P. H., Becker, E. L., and Sha’afi, R. I., 1984, Effect of phorbol 12-myristate 13-acetate and its analogue 4-alpha-phorbol 12,13-didecanoate on protein phosphorylation and lysosomal enzyme release in rabbit neutrophils, J. Biol. Chem. 259: 8605–8611.PubMedGoogle Scholar
  264. Whitin, J. C., Chapman, C. E., Simons, E. R., Chovaniec, M. E., and Cohen, H. J., 1980, Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate, J. Biol. Chem. 255: 1874–1878.PubMedGoogle Scholar
  265. Williams, D. A., and Orkin, S. H., 1986, Somatic gene therapy: Current status and future prospects, J. Clin. Invest. 77: 1053–1056.PubMedGoogle Scholar
  266. Windhorst, D. B., Page, A. R., Holmes, B., Quie, P. G., and Good, R. A., 1968, The pattern of genetic transmission of the leukocyte defect in fatal granulomatous disease of childhood, J. Clin. Invest. 47: 1026–1034.PubMedGoogle Scholar
  267. Wolff, G., Muller. C. R., and Jobke, A., 1980, Linkage of genes for chronic granulomatous disease and Xg, Hum. Genet. 54: 269–271.PubMedGoogle Scholar
  268. Wolfson, M., McPhail, L. C., Nasrallah, V. N., and Snyderman, R., 1985, Phorbol myristate acetate mediates redistribution of protein kinase C in human neutrophils: Potential role in the activation of the respiratory burst enzyme, J. Immunol. 135: 2057–2062.PubMedGoogle Scholar
  269. Woodruff, R. K., Wiley, J. S., Bell, W. R., McPherson, A. J., and Ford, D. S., 1981, Acanthocytosis and haemolytic anaemia due to the McLeod blood group, Aust. N. Z. J. Med. 11: 184–187.PubMedGoogle Scholar
  270. Wright, J., Schwartz, J. H., Olson, R., Kosowsky, J. M., and Tauber, A. I., 1986, Proton secretion by the sodium/hydrogen ion antiporter in the human neutrophil, J. Clin. Invest. 77: 782–788.PubMedGoogle Scholar
  271. Yamaguchi, T., Sato, K., Shimada, K., and Kakinuma, K., 1982, Subcellular localization of Oz-generating enzyme in guinea pig polymorphonuclear leukocytes; fractionation of subcellular particles by using a Percoll density gradient, J. Biochem. (Tokyo) 91: 3140.Google Scholar
  272. Yamaguchi, T., Kaneda, M., and Kakinuma, K., 1983, Essential requirement of magnesium ion for optimal activity of the NADPH oxidase of guinea pig polymorphonuclear leukocytes, Biochem. Biophys. Res. Commun. 115: 261–267.PubMedGoogle Scholar
  273. Yomtovian, R., Abramson, J., Quie, P., and McCullough, J., 1981, Granulocyte transfusion therapy in chronic granulomatous disease: Report of a patient and review of the literature, Transfusion 21: 739–743.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • John T. Curnutte
    • 1
  • Bernard M. Babior
    • 2
  1. 1.Department of PediatricsUniversity of Michigan School of MedicineAnn ArborUSA
  2. 2.Department of Basic and Clinical ResearchScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations