Iron Transformations by Freshwater Bacteria

  • J. Gwynfryn Jones
Part of the Advances in Microbial Ecology book series (AMIE, volume 9)

Abstract

Although the bacteria involved in the iron cycle have been recognized since the last century, they have received scant attention compared with those responsible for the cycling of carbon, nitrogen, and sulfur. This is hardly surprising; although iron forms 5% by weight of the earth’s crust and is of considerable economic importance, the involvement of bacteria in the global iron cycle is of little quantitative significance (Nealson, 1983). In the presence of oxygen and at near neutral pH, conditions which prevail over much of this planet, the oxidation of iron and its precipitation and deposition as the ferric form, Fe(III), is essentially a chemical process. The reaction is, however, dependent on pH, ferrous iron [Fe(II)] concentration, temperature, and ionic strength of the solution. In a freshwater system where the last two components were relatively stable, Davison and Seed (1983) found no evidence for biological mediation of the reaction. Given a solubility product of 10−38 M for Fe(OH)3 and therefore a probable maximum concentration of free Fe(III) at neutrality of 10−17 M what, then, is the likely involvement of bacteria in the iron cycle of freshwater systems?

Keywords

Axenic Culture Iron Acquisition Magnetotactic Bacterium Determinative Bacteriology Substrate Level Phosphorylation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akers, H. A., 1981, The effect of waterlogging on the quantity of microbial iron chelators (siderophores) in soil, Soil Sci. 132: 150–152.Google Scholar
  2. Akers, H. A., 1983, Isolation of the siderophore schizokinen from soil of rice fields, Appl. Environ. Microbiol. 45: 1704–1706.Google Scholar
  3. Anderson, M. A., and Morel, F. M., 1980, Uptake of Fe(II) by a diatom in oxic culture medium, Mar. Biol. Lett. 1: 263–268.Google Scholar
  4. Anderson, M. A., and Morel, F. M., 1982, The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii, Limnol. Oceanogr. 27: 789–813.Google Scholar
  5. Archibald, F., 1983, Lactobacillus plantarum, an organism not requiring iron, FEMS Microbiol. Lett. 19: 29–32.Google Scholar
  6. Aristovskaya, T. V., 1974, Genus Seliberia, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 160, Williams and Wilkins, Baltimore.Google Scholar
  7. Aristovskaya, T. V., and Hirsch, P., 1974, Genus Pedomicrobium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 150–153, Williams and Wilkins, Baltimore.Google Scholar
  8. Balashova, V. V., and Zavarzin, G. A., 1979, Anaerobic reduction of ferric iron by hydrogen bacteria, Microbiology 48: 733–778.Google Scholar
  9. Blakemore, R. P., 1975, Magnetotactic bacteria, Science 190: 377–399.PubMedGoogle Scholar
  10. Blakemore, R. P., Maratea, D., and Wolfe, R. S., 1979, Isolation and pure culture of a freshwater magnetotactic spirillum in chemically defined medium, J. Bacteriol. 140: 720729.Google Scholar
  11. Boone, D. R., and Bryant, M. P., 1980, Propionate degrading bacterium, Syntrophobacter wolinii sp. nov. gen. nov. from methanogenic ecosystems, Appl. Environ. Microbiol. 40: 626–632.Google Scholar
  12. Bradley, G., Gaylarde, C. C., and Johnston, J. M., 1984, A selective interaction between ferrous ions and lipopolysaccharide in Desulfovibrio vulgaris, J. Gen. Microbiol. 130: 441–444.Google Scholar
  13. Brand, L. E., Sunda, W. G., and Guillard, R. R. L., 1983, Limitations of marine phytoplankton reproductive rates by zinc, manganese and iron, Limnol. Oceanogr. 28: 1182–1198.Google Scholar
  14. Brock, T. D., 1978, The poisoned control in biogeochemical investigations, in: Environmental Biogeochemistry and Geomicrobiology (W. E. Krumbein, ed.), Vol. 3, pp. 717725, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  15. Brock, T. D., and Gustafson, J., 1976, Ferric iron reduction by sulfur-and iron-oxidizing bacteria, Appl. Environ. Microbiol. 32: 567–571.Google Scholar
  16. Caldwell, D. E., and Caldwell, S. J., 1980, Fine structure of in situ microbial iron deposits, Geomicrobiol. J. 2: 39–53.Google Scholar
  17. Cameron, A. J., and Liss, P. S., 1984, The stabilization of “dissolved” iron in freshwaters, Water Res. 18: 179–185.Google Scholar
  18. Chart, H., and Trust, T. J., 1983, Acquisition of iron by Aeromonas salmonicida, J. Bacteriol. 156: 758–764.Google Scholar
  19. Collienne, R. H., 1983, Photoreduction of iron in the epilimnion of acidic lakes, Limnol. Oceanogr. 28: 83–100.Google Scholar
  20. Cowen, J. P., and Silver, M. W., 1984, The association of iron and manganese with bacteria on marine macroparticulate material, Science 224: 1340–1342.PubMedGoogle Scholar
  21. Cullimore, D. R., and McCann, A. E., 1977, The identification, cultivation and control of iron bacteria in ground water, in: Aquatic Microbiology ( F. A. Skinner and J. M. She-wan, eds.), pp. 219–261, Academic Press, London.Google Scholar
  22. Cunningham, C. R., and Davison, W., 1980, An opto-electronic sediment detector and its use in the chemical micro-profiling of lakes, Freshwater Biol. 10: 413–418.Google Scholar
  23. Davison, W., and Seed, G., 1983, The kinetics of the oxidation of ferrous iron in synthetic and natural waters, Geochim. Cosmochim. Acta 47: 67–79.Google Scholar
  24. Davison, W., and Tipping, E., 1984, Treading in Mortimer’s footsteps: The geochemical cycling of iron and manganese in Esthwaite Water, Freshwater Biol. Assoc. Annu. Rep. 52: 91–101.Google Scholar
  25. Davison, W., Heaney, S. I., Tailing, J. F., and Rigg, E., 1981, Seasonal transformation and movements of iron in a productive English lake with deep-water anoxia, Schweiz. Z. HydrobioL 42: 196–224.Google Scholar
  26. DeCastro, A. F., and Ehrlich, H. L., 1970, Reduction of iron oxide minerals by a marine Bacillus. Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 317–327.Google Scholar
  27. Dondero, N. C., 1975, The Sphaerotilus-Leptothrix group, Annu. Rev. Microbiol. 29: 407, 428.Google Scholar
  28. Drake, C. H., 1965, Occurrence of Siderocapsa treubii in certain waters of Niederrhein, Gewass. Abwass. 39 /40: 41–63.Google Scholar
  29. Dubinina, G. A., 1976, Ecology of freshwater iron bacteria, Biol. Bull. 3: 473–489.Google Scholar
  30. Dubinina, G. A., and Kuznetsov, S. I., 1976, The ecological and morphological character-istics of microorganisms in Lesnaya Lamba ( Karelia ), Int. Rev. Ges. Hydrobiol. 61: 1–19.Google Scholar
  31. Dubinina, G. A., and Zhdanov, A. V., 1975, Recognition of the iron bacteria “Siderocapsa” as arthrobacters and description of Arthrobacter siderocapsulatus sp. nov., Int. J. Syst. Bacteriol. 25: 340–350.Google Scholar
  32. Entsch, B., Sim, R. G., and Hatcher, B. G., 1983, Indications from photosynthetic components that iron is a limiting nutrient in primary producers on coral reefs, Mar. Biol. 73: 17–30.Google Scholar
  33. Evanylo, L. P., Kadis, S., and Maudsley, J. R., 1984, Siderophore production by Proteus mirabilis, Can. J. Microbiol. 30: 1046–1051.Google Scholar
  34. Finden, D. A. S., Tipping, E., Jaworski, G. H. M., and Reynolds, C. S., 1984, Light-induced reduction of natural iron ( III) oxide and its relevance to phytoplankton, Nature 309: 783–784.Google Scholar
  35. Francko, D. A., and Heath, R. T., 1982, UV-sensitive complex phosphorus: Associaton with dissolved humic material and iron in a bog lake, Limnol. Oceanogr. 27: 564–569.Google Scholar
  36. Frankel, R. B., and Blakemore, R. P., 1984, Precipitation of Fe3O4 in magnetotactic bacteria, Phil. Trans. R. Soc. Lond. B 304: 567–574.Google Scholar
  37. Frolund, A., 1977, The seasonal variation of the neuston of a small pond, Bot. Tidsskrift. 72: 45–56.Google Scholar
  38. Gebers, R., 1981, Enrichment, isolation, and emended description of Pedomicrobium ferrugineum Aristovskaya and Pedomicrobium manganicum Aristovskaya, Int. J. Syst. Bacteriol. 31: 302–316.Google Scholar
  39. Ghiorse, W. C., and Chapnick, S. D., 1983, Metal-depositing bacteria and the distribution of manganese and iron in swamp waters, Ecol. Bull. ( Stockholm ) 35: 367–376.Google Scholar
  40. Ghiorse, W. C., and Hirsch, P., 1978, Iron and manganese deposition by budding bacteria, in: Environmental Biogeochemistry and Geomicrobiology ( W. E. Krumbein, ed.), Vol. 3, pp. 897–909, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  41. Ghiorse, W. C., and Hirsch, P., 1979, An ultrastructural study of iron and manganese deposition associated with extracellular polymers of Pedomicrobium-like budding bacteria, Arch. Microbiol. 123: 213–226.Google Scholar
  42. Gorlenko, V. M., Dubinina, G. A., and Kuznetsov, S. I., 1983, The ecology of aquatic microorganisms, in: Die Binnengewässer. Einzeldarstellugen aus der Limnologie and ihren Nachbargebieten, ( H.-J. Elster and W. Ohle, eds.), pp. 1–252, E. Schweizerbart’sche, Stuttgart.Google Scholar
  43. Gregory, E., Perry, R. S., and Staley, J. T., 1980, Characterization, distribution and significance of Metallogenium in Lake Washington, Microb. Ecol. 6: 125–140.Google Scholar
  44. Hanert, H., 1968, Investigations on isolation, physiology, and morphology of Gallionella ferruginea Ehrenberg, Arch. Mikrobiol. 60: 348–376.Google Scholar
  45. Hanert, H. 1970, Structure and growth of Gallionella ferruginea Ehrenberg in its natural habitat during the first 6 h of development, Arch. Mikrobiol. 75: 10–24.Google Scholar
  46. Hanert, H., 1974, In vivo kinetics of individual development of Gallionella ferruginea in batch culture, Arch. Microbio!. 96: 58–74.Google Scholar
  47. Hanert, H., 1981a, The genus Gallionella, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 509–515, Springer-Verlag, Berlin.Google Scholar
  48. Hanert, H., 198 lb, The genus Siderocapsa (and other iron-or manganese-oxidizing Eubacteria, in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 1049–1059, Springer-Verlag, Berlin.Google Scholar
  49. Heldal, M., and Tumyr, 0., 1983, Gallionella from metalimnion in an eutrophic lake: Morphology and X-ray energy-dispersive microanalysis of apical cells and stalks, Can. J. Microbiol. 29: 303–308.Google Scholar
  50. Hirsch, P., 1968, Biology of budding bacteria IV. Epicellular deposition of iron by aquatic budding bacteria, Arch. Mikrobiol. 60: 201–216.Google Scholar
  51. Hirsch, P., 1974a, Genus Clonothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 136, Williams and Wilkins, Baltimore.Google Scholar
  52. Hirsch, P., 1974b, Genus Crenothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 135–136, Williams and Wilkins, Baltimore.Google Scholar
  53. Hirsch, P., 1974c, Genus Lieskeella, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 134, Williams and Wilkins, Baltimore.Google Scholar
  54. Hirsch, P., 1974d, Genus Hyphomicrobium, in: Bergey’s Manual of Determinative Bacteri-ology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 148–150, Williams and Wilkins, Baltimore.Google Scholar
  55. Hirsch, P., 1981, The genus. Toxothrix, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 409–411, Springer-Verlag, Berlin.Google Scholar
  56. Hirsch, P., and Skuja, H., 1974, Genus Planctomyces, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 162–163, Williams and Wilkins, Baltimore.Google Scholar
  57. Hirsch, P., and Zavarzin, G. A., 1974, Genus Toxothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), p. 120, Williams and Wilkins, Baltimore.Google Scholar
  58. Jones, J. G., 1981, The population ecology of iron bacteria ( Genus Ochrobium) in a stratified eutrophic lake, J. Gen. Microbiol. 125: 85–93.Google Scholar
  59. Jones, J. G., 1983, A note on the isolation and enumeration of bacteria which deposit and reduce ferric iron, J. Appl. Bacteriol. 54: 305–310.Google Scholar
  60. Jones, J. G., Gardener, S., and Simon, B. M., 1983, Bacterial reduction of ferric iron in a stratified eutrophic lake, J. Gen. Microbiol. 129: 131–139Google Scholar
  61. Jones, J. G., Gardener, S., and Simon, B. M., 1984a, Reduction of ferric iron by heterotrophic bacteria in lake sediments, J. Gen. Microbiol. 130: 45–51.Google Scholar
  62. Jones, J. G., Davison, W., and Gardener, S., 1984b, Iron reduction by bacteria. Range of organisms involved and metals reduced, FEMS Microbiol. Lett. 21: 133–136.Google Scholar
  63. Kelly, D. P., Norris, P. R., and Brierley, C. L., 1979, Microbiological methods for the extrac-tion and recovery of metals, Symp. Soc. Gen. Microbiol. 29: 263–308.Google Scholar
  64. Kono, K., and Usami, S., 1982, Biological reduction of ferric iron by iron-and sulfur-oxidizing bacteria, Agric. Biol. Chem. 46: 803–805.Google Scholar
  65. Kucera, S., and Wolfe, R. S., 1957, A selective enrichment method for Gallionella ferruginea, J. Bacteriol. 74: 344–349.PubMedGoogle Scholar
  66. Kutuzova, R. S., 1974, Electron microscopic study of ooze overgrowths of an iron-oxidizing coccus related to Siderococcus limoniticus Dorff, Microbiology 43: 237–241.Google Scholar
  67. Kuznetsov, S. I., 1970, The Microflora of Lakes and Its Geochemical Acivity, University ofTexas Press, Austin. Lammers, P. J., and Sanders-Loehr, J., 1982, Active transport of ferric schizokinen in Anabaena sp., J. Bacteriol. 151: 288–294.Google Scholar
  68. Lascelles, J., and Burke, K. A., 1978, Reduction of ferric iron by L-lactate and n-L-glycerol3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system, J. Bacteriol. 134: 585–589.PubMedGoogle Scholar
  69. Lundgren, D. G., and Silver, M., 1980, Ore leaching by bacteria, Annu. Rev. Microbiol. 34: 263–283.Google Scholar
  70. Mah, R. A., 1982, Methanogenesis and methanogenic partnerships, Phil. Trans. R. Soc. Lond. B. 297: 599–616.Google Scholar
  71. McInerney, M. J., Bryant, M. P., and Pfennig, N., 1979, Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens, Arch. Microbiol. 122: 129–135.Google Scholar
  72. McInerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W., 1981, Syntrophomonas wolfei gen. nov. sp. nov. an anaerobic, syntrophic, fatty acid-oxidizing bacterium, Appl. Environ. MicrobioL 41: 1029–1039.Google Scholar
  73. Moore, R. L., 1981, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: The Prokaryotes (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel), pp. 480–487, Springer-Verlag, Berlin.Google Scholar
  74. Moores, J. C., Magazin, M., Ditta, G. S., and Leong, J., 1984, Cloning of genes involved in the biosynthesis of pseudobactin, a high-affinity iron transport agent of a plant growth-promoting Pseudomonas strain, J. Bacteriol. 157: 53–58.PubMedGoogle Scholar
  75. Mortimer, C. H., 1941, The exchange of dissolved substances between mud and water in lakes: I and II, J. Ecol. 29: 280–329.Google Scholar
  76. Mortimer, C. H., 1942, The exchange of dissolved substances between mud and water in lakes: III and IV, J. Ecol. 30: 147–201.Google Scholar
  77. Mulder, E. G., 1964, Iron bacteria, particularly those of the Sphaerotilus-Leptothrix group, and industrial problems, J. Appl. Bacteriol. 27: 151–173.Google Scholar
  78. Mulder, E. G., 1974, Genus Leptothrix, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 129–133, Williams and Wilkins, Baltimore.Google Scholar
  79. Mulder, E. G., and Deinema, M. H., 1981, The sheathed bacteria, in: The Prokaryotes (M. P. Stan, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel), pp. 425–440, Springer-Verlag, Berlin.Google Scholar
  80. Mulder, E. G., and van Veen, W. L., 1974, Genus Sphaerotilus, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 128129, Williams and Wilkins, Baltimore.Google Scholar
  81. Munch, J. C., and Ottow, J. C. G., 1977, Model experiments on the mechanism of bacterial iron-reduction in water logged soils, Z. Pflanz. Dueng. Bodenkd. 140: 549–562.Google Scholar
  82. Munch, J. C., and Ottow, J. C. G., 1982, Effect of cell contact and iron(III) oxide form on bacterial iron reduction, Z. Pflanz. Dueng. Bodenkd. 145: 66–77.Google Scholar
  83. Munch, J. C., and Ottow, J. C. G., 1983, Reductive transformation mechanism of ferric oxides in hydromorphic soils, Ecol. Bull. 35: 383–394.Google Scholar
  84. Nealson, K., 1983, The microbial iron cycle, in: Microbial Geochemistry ( W. E. Krumbein, ed.), pp. 159–190, Blackwell, Oxford.Google Scholar
  85. Neilands, J. B., 1974, Siderophores of bacteria and fungi, Microbiol. Sci. 1: 9–14.Google Scholar
  86. Nicholls, K. H., and Fung, D., 1982, Accumulation of iron in the cell walls of the two mono-specific freshwater genera Catena and Dichotomosiphon ( Chlorophyceae ), Arch. Protis-tenkd. 125: 209–214.Google Scholar
  87. Novitsky, J. A., Scott, I. R., and Kepkay, P. E., 1981, Effects of iron, sulfur, and microbial activity on aerobic to anaerobic transitions in marine sediments, Geomicrobiol. J. 2: 211–223.Google Scholar
  88. Nunley, J. W., and Krieg, N. R., 1968, Isolation of Gallionella ferruginea by the use of formalin, Can. J. Microbiol. 14: 385–389.Google Scholar
  89. Obuekwe, C. O., Westlake, D. W. S., and Cook, R. D., 1981, Effect of nitrate on reduction of ferric iron by a bacterium isolated from crude oil, Can. J. Microbiol. 27: 692–697.Google Scholar
  90. Ottow, J. C. G., 1970, Selection, characterization and irdn-reducing capacity of nitrate reductaseless (nit-) mutants from iron reducing bacteria, Z. Allg. Mikrobiol. 10:55–62. Ottow, J. C. G., and Glathe, H., 1971, Isolation and identification of iron-educing bacteria from gley soils, Soil Biol. Biochem. 3: 43–55.Google Scholar
  91. Ottow, J. C. G., and Munch, J. C., 1978, Mechanisms of reductive transformations in the anaerobic microenvironment of hydromorphic soils, in: Environmental Biogeochemistry and Geomicrobiology ( W. E. Krumbein, ed.), Vol. 2, pp. 483–491, Ann Arbor Science Publishers, Ann Arbor, Michigan.Google Scholar
  92. Pfanneberg, T., and Fischer, W. R., 1984, An aerobic Corynebacterium from soil and its capability to reduce various iron oxides, Zentralbl. Mikrobiol. 139: 167–172.Google Scholar
  93. Pringsheim, E. G., 1949, Iron bacteria, Biol. Rev. 24: 200–245.Google Scholar
  94. Rogers, S. R., and Anderson, J. J., 1976, Measurement of growth and iron depositon in Sphaerotilus discophorus, J. Bacteriol. 126: 257–263.PubMedGoogle Scholar
  95. Schmidt, J. M., and Starr, M. P., 1981, The Blastocaulis-Planctomyces group of budding and appendaged bacteria, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 496–504, Springer-Verlag, Berlin.Google Scholar
  96. Schmidt, J. M., and Swafford, J. R., 1981, The genus Seliberia, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 516–519, Springer-Verlag, Berlin.Google Scholar
  97. Schmidt, J. M., and Zavarzin, G. A., 1981, The genera Caulococcus and Kusnezovia, in: The Prokaryotes ( M. P. Starr, H. Stolp,. H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 529–530, Springer-Verlag, Berlin.Google Scholar
  98. Schmidt, J. M., Sharp, W. P., and Starr, M. P., 1982, Metallic-oxide encrustations of the nonprosthecate stalks of naturally occurring populations of Planctomyces bekefii, Curr. Microbiol. 7: 389–394.Google Scholar
  99. Schmidt, W.-D., 1984, Die eisenbakterien des Plusssees. II. Morphologie und feinstruktur von Siderocapsa geminata (Skuja 1954/57), Z. Allg. Mikrobiol. 24: 391–396.Google Scholar
  100. Schmidt, W.-D., and Overbeck, J., 1974, Studies of “iron bacteria” from Lake Pluss. I. Morphology, fine structure and distribution of Metallogenium sp. and Siderocapsa geminata, Z. Allg. Mikrobiol. 24: 329–339.Google Scholar
  101. Shakhobova, N. N., 1981, Participation of Arthrobacter bacteria in the reduction of ferric compounds, Isv. Akad. Nauk Tadzh, SSR, Ocd. Biol. Nauk 1981 (1): 129–132.Google Scholar
  102. Sigel, S. P., and Payne, S. M., 1982, Effect of iron limitation on growth, siderophore production, and expression of outer membrane proteins of Vibrio cholerae, J. Bacteriol. 150: 148–155.PubMedGoogle Scholar
  103. Sorensen, J., 1982, Reduction of ferric iron in anaerobic, marine sediment and interaction with reduction of nitrate and sulfate, Appl. Environ. Microbiol. 43: 319–324.Google Scholar
  104. Staley, J. T., and Bauld, J., 1981, The genus Planctomyces, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 505–508, Springer-Verlag, Berlin.Google Scholar
  105. Svorcova,.L., 1975, Iron bacteria of the genus Siderocapsa in mineral waters, Z. Allg. Mikrobiol. 15: 553–557.Google Scholar
  106. Svorcova, L., 1979, Diagnostik der Eisenbakterien der Familie Siderocapsaceae, Arch. Hydrobiol. 87: 423–452.Google Scholar
  107. Takai, Y., and Kamura, T., 1966, The mechanism of reduction in waterlogged paddy soil, Folia Microbiol. 11: 304–313.Google Scholar
  108. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41: 100–180.Google Scholar
  109. Tipping, E., and Cooke, D., 1982, The effects of adsorbed humic substances on the surface charge of geothite (a-FeOOH) in freshwaters, Geochim, Cosmochim. Acta 46: 75–80.Google Scholar
  110. Tipping, E., and Woof, C., 1983, Elevated concentrations of humic substances in a seasonally anoxic hypolimnion• Evidence for co-accumulation with iron, Arch. Hydrobiol. 98: 137–145.Google Scholar
  111. Tipping, E., Woof, C., and Cooke, D., 1981, Iron oxide from a seasonally anoxic lake, Geochim. Cosmochim. Acta 45: 1411–1419.Google Scholar
  112. Tipping, E., Woof, C., and Ohnstad, M., 1982, Forms of iron in the oxygenated waters of Esthwaite Water, U.K., Hydrobiologia 92: 383–393.Google Scholar
  113. Trick, C. G., Anderson, R. J., Gilliam, A., and Harrison, P. J., 1983, Procentrin, an extra-cellular siderophore produced by the marine dinoflagellate Procentrum minimum, Science 219: 306–308.PubMedGoogle Scholar
  114. Van Veen, W. L., Mulder, E. G., and Deinema, M. H., 1978, The Sphaerotilus-Leptothrix group of bacteria, Microbiol. Rev. 42: 329–356.Google Scholar
  115. Verdouw, H., and Dekkers, E. M. J., 1980, Iron and manganese in Lake Vechten (The Netherlands); Dynamics and role in the cycle of reducing power, Arch. HydrobioL 89: 509–532.Google Scholar
  116. Volker, H., Schweisfurth, R., and Hirsch, P., 1977, Morphology and ultrastructure of Crenothrix polyspora Cohn, J. Bacteriol. 131: 306–313.PubMedGoogle Scholar
  117. Walker, J. C. G., 1984, Suboxic diagenesis in bonded iron formations, Nature 309: 340–342.PubMedGoogle Scholar
  118. Walsby, A. E., 1981, Gas-vacuolate bacteria (apart form Cyanobacteria), in: The Prokary-otes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 441–447, Springer-Verlag, Berlin.Google Scholar
  119. Walsh, F., and Mitchell, R., 1972a, . Sci. Technol. 6: 809–812.Google Scholar
  120. Walsh, F., and Mitchell, R., 1972b, An acid tolerant iron-oxidizing Metallogenium, . 72: 369–373.Google Scholar
  121. Walsh, F., and Mitchell, R., 1973, Differentiation between Gallionella and Metallogenium, Arch. Mikrobiol. 90: 19–25.Google Scholar
  122. Warner, P. J., Williams, P. H., Bindereif, A., and Neilands, J. B., 1981, Co1V plasmid specified aerobactin synthesis by invasive strains of Escherichia coli, Infect. Immunol. 33: 540–545.Google Scholar
  123. Williams, P. H., 1979, Novel iron uptake system specified by ColV plasmids: An important component in the virulence of invasive strains of Escherichia coli, Infect. Immunol. 26: 925–932.Google Scholar
  124. Williams, P., Brown, M. R. W., and Lambert, P. A., 1984, Effect of iron deprivation on the production of siderophores and outer membrane proteins in Klebsiella aerogenes, J. Gen. Microbiol. 130: 2357–2365.Google Scholar
  125. Wolfe, R. S., 1958, Cultivation, morphology and classification of the iron bacteria, J. Am. Water Works Assoc. 50: 1241–1249.Google Scholar
  126. Woolfolk, C. A., and Whiteley, H. R., 1962, Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus, J. Bacteriol. 84: 647–658.PubMedGoogle Scholar
  127. Wurtsbaugh, W. A., and Home, A. J., 1983, Iron in eutrophic Clear Lake, California: Its importance for algal nitrogen fixation and growth, Can. J. Fish. Aquat. Sci. 40: 1419–1429.Google Scholar
  128. Zavarzin, G. A., 1974, Genus Ochrobium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R. E. Buchanan and N. E. Gibbons, eds.), pp. 467–468, Williams and Wilkins, Baltimore.Google Scholar
  129. Zavarzin, G. A., 1981, The genus Metallogenium, in: The Prokaryotes ( M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), pp. 524–528, Springer-Verlag, Berlin.Google Scholar
  130. Zavarzin, G. A., and Hirsch, P., 1974a, Genus Gallionella, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. ( R.. Buchanan and N. E. Gibbons, eds.), pp. 160–161, Williams and Wilkins, Baltimore.Google Scholar
  131. Zavarzin, G. A., and Hirsch, P., 1974b, Genus Metallogenium, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), pp. 163–165, Williams and Wilkins, Baltimore.Google Scholar

Copyright information

© Springer Science+Business Media New York 1986

Authors and Affiliations

  • J. Gwynfryn Jones
    • 1
  1. 1.Freshwater Biological AssociationAmbleside CumbriaEngland

Personalised recommendations