Advertisement

Sub-Poissonian Photon Statistics in Resonance Fluorescence

  • R. Short
  • L. Mandel
Conference paper

Abstract

When completely coherent light falls on a photoelectric detector, the number of photoelectric counts n registered in some finite time interval T obeys Poisson statistics. This is characterized by the fact that the variance ‹(∆n)2› of n equals the mean number ‹n›. When the radiation field is describable in terms of classical waves with a fluctuating light intensity, then ‹(∆n)2› in general exceeds ‹n›, as a consequence of the intensity fluctuations. However, within the framework of quantum electrodynamics there also exist quantum states of the electromagnetic field for which n is sub-Poissonian,or ‹(∆n)2› ‹ ‹n›. These states have no classical description, and the observation of sub-Poissonian statistics in a photoelectric counting experiment therefore represents evidence for the quantum nature of the field. We describe the results of such an experiment below[1].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A first report on this work was given by R. Short and L. Mandel, Phys. Rev. Lett. 51, 384 (1983).CrossRefGoogle Scholar
  2. 2.
    L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. J. Glauber, Phys. Rev. 130, 2529 and 131, 2766 (1963).MathSciNetGoogle Scholar
  4. 4.
    E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); see also J. R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics (W. A. Benjamin, Inc., New York, 1968 ).Google Scholar
  5. 5.
    H. J. Carmichael and D. F. Walls, J. Phys. B 9, L43 and 1199 (1976).Google Scholar
  6. 6.
    H. J. Kimble and L. Mandel, Phys. Rev. A 13, 2123 (1976).ADSCrossRefGoogle Scholar
  7. 7.
    L. Mandel, Opt. Lett. 4, 205 (1979).ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Cook, Opt. Comm. 35, 347 (1980); Phys. Rev. A 23, 1243 (1981).Google Scholar
  9. 9.
    D. Lenstra, Phys. Rev. A 26, 3369 (1982).Google Scholar
  10. 10.
    H. J. Carmichael, P. Drummond, P. Meystre and D. F. Walls, J. Phys. A 11, L121 (1978).ADSCrossRefGoogle Scholar
  11. 11.
    H. Paul, Rev. Mod. Phys. 54, 1061 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    Surendra Singh, Opt. Comm. 44, 254 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    H. J. Kimble, M. Dagenais and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    H. J. Kimble, M. Dagenais and L. Mandel, Phys. Rev. A 18, 201 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    M. Dagenais and L. Mandel, Phys. Rev. A 18, 2217 (1978).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • R. Short
    • 1
  • L. Mandel
    • 1
  1. 1.University of RochesterRochesterUSA

Personalised recommendations