Statistical Treatment of Quantum Optical Systems and Squeezing Effect

  • F. Casagrande
  • E. Eschenazi
  • L. A. Lugiato
  • G. Strini
Conference paper


The analysis of fluctuations in quantum optical systems has been a subject of outstanding interest since Glauber1 formulated his theory of quantum coherence. Haken and coworkers2, Lamb and Scully3, Risken4, Lax and Louisell5 performed fundamental works on laser noise, thereby elaborating a number of useful and flexible techniques. Even if these studies remain basic for the present understanding of fluctuations, in the recent years it clearly emerged the need of a further elaboration of the methods involved. The reasons for that can be easily understood by considering that the main objective in the sixties was the analysis of fluctuations in the laser threshold region. In this problem the results are quite insensible to the approximations used, and completely different procedures lead to the same or to equivalent final equations. This is no longer true in the case of some problems considered more recently, as e.g. optical bistability. In partiçular, attention fogused on nonclassical effects as antibunching6,7 and “squeezing”8. The possibility of generating squeezed states of light, in which the noise in one quadrature component is reduced with respect to coherent Glauber states, has given rise to remarkable interest in the fields of optical communication, interferometry, gravitational wave detection. Now, the analysis of these purely quantum effects requires using the most refined techniques available, because any inaccurate approximation is likely to alter or even destroy them.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963)ADSMathSciNetGoogle Scholar
  2. 2).
    H. Haken, Handbuch der Physik Vol. XXV/2c, Springer-Verlag, Berlin 1970Google Scholar
  3. 3).
    M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics Addison - Wesley, Reading, Mass. 1974Google Scholar
  4. 4).
    H. Risken, Z. Phys. 186, 85 (1965)ADSCrossRefGoogle Scholar
  5. 5).
    M. Lax and W. H. Louisell, IEEE J. Quantum Electron. QE-3, 47 (1967)Google Scholar
  6. 6).
    D. F. Walls, Nature 280, 451 (1979)ADSCrossRefGoogle Scholar
  7. 7).
    L. Mandel, J. Opt. (Paris) 10, 51 (1979)ADSCrossRefGoogle Scholar
  8. 8).
    D. Stoler, Phys. Rev. D1, 3217 (1970) H. P. Yuen, Phys. Rev. A13, 2226 (1976)Google Scholar
  9. 9).
    L. A. Lugiato, F. Casagrande, and L. Pizzuto, Phys. Rev. A26, 3438 (1982)ADSCrossRefGoogle Scholar
  10. 10).
    F. Casagrande, E. Eschenazi and L. A. Lugiato, submitted #’or,publicationGoogle Scholar
  11. 11).
    L. A. Lugiato, Pbysica 81A, 565 (1975); 82A, 1 (1976)Google Scholar
  12. 12).
    L. A. Lugiato, P. Mandel and L. M. Narducci, submitted for publicationGoogle Scholar
  13. 13).
    W. Weidlich and F. Haake, Z. Phys. 152 30 (1965); 186, 203 (1965)Google Scholar
  14. 14).
    R. Bonifacio and L. A. Lugiato, Phys. Rev. A18, 1129 (1978)Google Scholar
  15. 15).
    L. A. Lugiato, Lett. Nuovo Cimento 23, 609 (1978)ADSCrossRefGoogle Scholar
  16. 16).
    E. Wigner, Phys. Rev. 40, 749 (1932)ADSCrossRefGoogle Scholar
  17. 17).
    L. A. Lugiato, Nuovo Cimento 50B 89 (1979)Google Scholar
  18. 18).
    J. P. Gordon, Phys. Rev. 161, 367 (1967)ADSCrossRefGoogle Scholar
  19. 19).
    F. Haake and M. Lewenstein, Z. Physik B 48, 37 (1982)ADSCrossRefMathSciNetGoogle Scholar
  20. 20).
    F. Haake and M. Lewenstein, Phys. Rev. A27 1013 (1982)Google Scholar
  21. 21).
    E. C. G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)CrossRefzbMATHGoogle Scholar
  22. 22).
    P. D. Drummond and C. W. Gardiner, J. Phys. A13, 2553 (1980)MathSciNetGoogle Scholar
  23. 23).
    F. Casagrande and L. A. Lugiato, Nuovo Cimento 201, 173 (1980)CrossRefGoogle Scholar
  24. 24).
    L. A. Lugiato and G. Strini, Opt. Comm. 41, 67 (1982)ADSCrossRefGoogle Scholar
  25. 25).
    F.. T. Arecchi and A. Politi, Lett. Nuovo Cimento 23, 65 (1978)CrossRefGoogle Scholar
  26. 26).
    F. Casagrande, L. A. Lugiato and G. Strini, in preparationGoogle Scholar
  27. 27).
    L. A. Lugiato and G. Strini, Opt. Comm. 41, 374 (1982)ADSCrossRefGoogle Scholar
  28. 28).
    M. Reid and D. F. Walls, Phys. Rev. A, in pressGoogle Scholar
  29. 29).
    L. A. Lugiato and G. Strini, Opt. Comm. 41, 447 (1982)ADSCrossRefGoogle Scholar
  30. 30).
    P. D. Drummond, J. K. Mc Neil and D.. F. Walls, Optica Acta 28, 211 (1981)ADSCrossRefGoogle Scholar
  31. 31).
    G. J. Milburn and D. F. Walls, 401 (1981) and in Quantum Optics, Experimental Gravitation and Measurement Theory Proc. NATO ASI, Bad Windsheim, Germany, August 1981, ed. P. Meystre and M. O. Scully, Plenum Press 1983Google Scholar
  32. 32).
    L. Mandel, Opt. Comm. 42, 437 (1982)ADSCrossRefGoogle Scholar
  33. 33).
    G. J. Milburn and D. F. Walls, Phys. Rev. 222, 392 (1983)CrossRefGoogle Scholar
  34. 34).
    L. A. Lugiato, G. Strini and F. De Martini, Opt. Lett. 8, 256 (1983)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • F. Casagrande
    • 1
  • E. Eschenazi
    • 1
  • L. A. Lugiato
    • 1
  • G. Strini
    • 1
  1. 1.Dipartimento di Fisica dell’UniversitàMilanoItaly

Personalised recommendations