Advertisement

Instabilities and Routes to Chaos in a Unidirectional, Inhomogeneously Broadened Ring Laser

  • L. E. Urbach
  • S.-N. Liu
  • N. B. Abraham
Conference paper

Abstract

Essentially all of the theoretical studies of laser instabilities in inhomogenously broadened media have been restricted to non-Doppler broadened lasers or unidirectional ring lasers to avoid the complications of the spatial variations caused by the standing wave pattern in a Fabry-Perot cavity and to avoid effects of the two holes burned in the gain profile by single mode operation [1–7]. In contrast, the reports of single-mode laser instabilities in dc-excited systems have all been for Fabry-Perot lasers, making comparisons between theory and experiments difficult at times [1,8–13]. The unidirectional ring theory is significantly simpler than the standing wave Doppler theory so there has been considerable interest in providing a suitable laser for experimental tests.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.W. Casperson, IEEE J. Quant. Elec., QE-14 756 (1978).Google Scholar
  2. 2.
    L.W. Casperson, Phys. Rev. A, 21, 911 (1980); 23, 248 (1981).Google Scholar
  3. 3.
    S. Hendow and M.Sargent, III, Opt. Comm., 40, 385 (1982); 43, 59 (1982).CrossRefGoogle Scholar
  4. 4.
    M.L. Minden and L.W. Casperson, IEEE J. Quant. Elec., QE-18 1952 (1982).Google Scholar
  5. 5.
    L.W. Casperson in Third New Zealand Symposium on Laser Physics Lecture Notes in Physics, eds. D.F. Walls and J. Harvey ( Springer: NY, 1983 ).Google Scholar
  6. 6.
    P. Mandel, Opt. Comm., 44, 400 (1983); 45, 269 (1983) and in this volume,. p. 579.Google Scholar
  7. 7.
    L.A. Lugiato, L.M. Narducci, D.K. Bandy and N.B. Abraham, Opt. Comm., 45 (to be published 1983); and in this volume, p. 217.Google Scholar
  8. 8.
    J. Bentley and N.B. Abraham, Opt. Comm., 41, 52 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    M. Maeda and N.B. Abraham, Phys. Rev. A, 26, 3395 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    N.B. Abraham, T. Chyba, M.Coleman, R.S. Gioggia, N.J. Halas, L.M. Hoffer, S.-N. Liu, M. Maeda, and J.C. Wesson in Third New Zealand Symposium on Laser Physics op. cit..Google Scholar
  11. 11.
    R.S. Gioggia and N.B. Abraham, submitted to Phys. Rev. Lett. (1983) and in this volume, p. 563.Google Scholar
  12. 12.
    R.S. Gioggia and N.B. Abraham, Opt. Comm., to be published.Google Scholar
  13. 13.
    N.M. Lawandy and G.A. Koepf, IEEE J. Quant. Elec., QE-16 701 (1980); N.M. Lawandy, IEEE J. Quant. Elec., QE-18 1992 (1982).Google Scholar
  14. 14.
    S.-S. Chuang, H. Grace, and H. Gamo, IEEE J. Quant. Elec., QE-3, 243 ( 1967 ); S.-S. Chuang, Ph.D. Thesis, U. Rochester (1970).Google Scholar
  15. 15.
    R. Vetter and E. Marie, J. Phys. B, 11, 2845 (1978).ADSCrossRefGoogle Scholar
  16. 16.
    S. Hendow, private communication.Google Scholar
  17. 17.
    Y. Pomeau and P. Manneville, Commun. Math. Phys., 77, 189 (1980); Physica D, 1, 219 (1980).ADSMathSciNetGoogle Scholar
  18. 18.
    J.E. Hirsch, B.A. Huberman, D.J. Scallapino, Phys. Rev. A, 25, 519 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • L. E. Urbach
    • 1
  • S.-N. Liu
    • 1
  • N. B. Abraham
    • 1
  1. 1.Department of PhysicsBryn Mawr CollegeBryn MawrUSA

Personalised recommendations