Advertisement

The Driven Dicke Models

  • S. S. Hassan
  • G. P. Hildred
  • R. R. Puri
  • R. K. Bullough
Conference paper

Abstract

Master equations are being used increasingly in quantum optics.1 The method consists of deriving an equation for the evolution of the reduced density operator ρa for the subsystem A of the composite system R+A: R is a reservoir whose correlations are assumed to decay faster than the transients of A. One starts from the Liouville equation for the system density operator ρr+a and by defining a suitable projection operator P one obtains an integro differential equation for Pρr+a. Usually P =ρR(O)Tr where pR(O) is the initial density operator of R and the final working equation for p is usually found in Born and Markov approximations. But it has been argued2 that this definition of P together with Born and Markov approximations introduces a decoupling between R and A. To avoid this one may take recourse to time dependent projection operators2 which therefore introduce additional complications. We shall use this note, which also surveys our recent work on the driven Dicke model, to point out the limitations of the usual projection operator method.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. S. Agarwal, Springer Tracts in Modern Physics, Vol. 70, Springer-Verlag, Heidelberg (1974).sGoogle Scholar
  2. 2.
    C. R. Willis and R. H. Piccard, Phys. Rev. A9: 1343 (1974).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    R. H. Dicke, Phys. Rev. 93: 99 (1954).ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    H. J. Carmichael and D. F. Walls, J. Phys. B9: 1199 (1976).ADSMathSciNetGoogle Scholar
  5. 5.
    G. S. Agarwal, A. C. Brown, L. M. Narducci, D. H. Feng, and R. Gilmore, Phys. Rev. A21: 257 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    R. R. Puri and S. V. Lawande (a) Phys. Lett. 72A:200 (1979); (b) Physica 101A: 599 (1980).MathSciNetGoogle Scholar
  7. 7.
    S. Ya. Kilin, Sov. Phys. -JETP 51: 1081 (1980).Google Scholar
  8. 8.
    R. R. Puri, S. V. Lawande, and S. S. Hassan, Opt. Comm. 35: 179 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    S. S. Hassan, R. K. Bullough, R. R. Puri, and S. V. Lawande, Physica 103A: 213 (1980).CrossRefMathSciNetGoogle Scholar
  10. 10.
    R.R. Puri, Ph.D. Thesis, University of Bombay (1981).Google Scholar
  11. 11.
    S. S. Hassan and R.K. Bullough in Optical Bistability C. M. Bowden, M. Ciftan and M. R. Robl, eds., Plenum Press (N.Y. 1981 ).Google Scholar
  12. 12.
    R. R. Puri and S. V. Lawande, Physica (to appear).Google Scholar
  13. 13.
    R. R. Puri and S. S. Hassan, Physica (to appear).Google Scholar
  14. 14.
    S. Ya. Kilin, Sov. Phys. -JETP 55: 38 (1982).Google Scholar
  15. 15.
    S. S. Hassan, G. P. Hildred, R. R. Puri, and R. K. Bullough, J. Phys. B15: 2635 (1982).ADSMathSciNetGoogle Scholar
  16. 16.
    R. R. Puri, G. P. Hildred, S. S. Hassan, and R. K. Bullough, this volume, p. 527.Google Scholar
  17. 17.
    S. S. Hassan, Ph.D. Thesis, University of Manchester (1976).Google Scholar
  18. 18.
    G. P. Hildred, S. S. Hassan, R. R. Puri, and R. K. Bullough, J. Phys. B16: 1703 (1983).ADSGoogle Scholar
  19. 19.
    M. J. Kimble and L. Mandel, Phys, Rev. 15: 689 (1979).CrossRefGoogle Scholar
  20. 20.
    R. K. Bullough in the Discussions to Phil. Trans. Roy. Soc. A293: 232 (1976).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • S. S. Hassan
    • 2
  • G. P. Hildred
    • 1
  • R. R. Puri
    • 1
  • R. K. Bullough
    • 1
  1. 1.Department of MathematicsUMISTManchesterUK
  2. 2.Ain Shams UniversityCairoEgypt

Personalised recommendations