Advertisement

Photon Statistics of the Linear Amplifier

  • S. Friberg
  • L. Mandel
Conference paper

Abstract

The linear light amplifier has recently generated renewed discussion in connection with the question whether it is possible to reproduce or clone an incident photon in an arbitrary quantum state. [l–3] If exact cloning were possible, this would imply a violation of the uncertainty principle, so that some fundamental limitations are imposed on the amplifier. The same limitations prevent light amplifiers, when inserted into one or more arms of an interferometer, from allowing us to determine which path through the interferometer a given photon followed.[4] What prevents precise cloning of a photon is the existence of spontaneous and unpredictable photon emissions in any amplification mechanism,[2,3] so that there is only a stochastic connection between the incoming and outgoing photons. This is the subject of the present article.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. K. Wooters and W. H. Zurek, Nature (London) 299, 802 (1982).ADSCrossRefGoogle Scholar
  2. 2.
    P. W. Milonni and M. L. Hardies, Phys. Lett. 92A, 321 (1982).Google Scholar
  3. 3.
    L. Mandel, Nature, to be published.Google Scholar
  4. 4.
    A. Garuccio, V. Rapisarda and J.-P. Vigier, Phys. Lett. 90A, 17 (1982).Google Scholar
  5. 5.
    K. J. McNeil and D. F. Walls, J. Phys. A 1, 104 (1975).ADSCrossRefGoogle Scholar
  6. 6.
    S. Carusotto, Phys. Rev. A 11, 1629 (1975).Google Scholar
  7. 7.
    L. Mandel, Phys. Rev. A 14, 2351 (1976).Google Scholar
  8. 8.
    N. B. Abraham and S. R. Smith, Phys. Rev. A 15, 421 (1977).ADSCrossRefGoogle Scholar
  9. 9.
    E. B. Rockower, N. B. Abraham and S. R. Smith, Phys. Rev. A 17, 1100 (1978).ADSCrossRefGoogle Scholar
  10. 10.
    U. Mohr, Opt. Comm. 41, 21 (1982).ADSCrossRefGoogle Scholar
  11. 11.
    S. Friberg and L. Mandel, Opt. Comm. 46, 141 (1983).ADSCrossRefGoogle Scholar
  12. 12.
    Hilbert space operators are identified by the caret ^.Google Scholar
  13. 13.
    M. Sargent III, M. O. Scully and W. E. Lamb, Jr., Laser Physics ( Addison-Wesley, Reading, Mass., 1974 ).Google Scholar
  14. 14.
    E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963); see also J. R. Klauder and E.C.G. Sudarshan, Fundamentals of Quantum Optics (W. A. Benjamin, New York, 1968 ).Google Scholar
  15. 15.
    R. J. Glauber, Phys. Rev. 131, 2766 (1963).ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    I. S. Gradshteyn and I. W. Ryzhik, Tables of Integrals, Series and Products ( Academic Press, New York, 1965 ) p. 4.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • S. Friberg
    • 1
  • L. Mandel
    • 1
  1. 1.University of RochesterRochesterUSA

Personalised recommendations