Advertisement

Symmetries and Periodicities of Partially Coherent Fields

  • A. W. Lohmann
  • J. Ojeda-Casteneda
  • N. Streibl
Conference paper

Abstract

The symmetries of wave fields are of practical interest in holography, phase conjugation and for automatic focusing. Periodicities of wavefields find practical applications in self-imaging, in interferometers based on the Talbot and on the Lau effect and in Fourier spectrometry. We show that if the operator form for the solution of the Helmholtz-equation is employed, it is possible to discuss in a simple fashion both the symmetry and the periodicity of the propagating field under coherent and under partially coherent illumination.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.D. Feit, J.A. Fleck, Light propagation in graded-index optical fibers, Appi. Opt. 17: 3990 (1978)ADSGoogle Scholar
  2. M.J. Bastiaans, Transport equations for the Wigner distribution function, Opt. Acta 26: 1265 (1979)ADSCrossRefMathSciNetGoogle Scholar
  3. It seems quite clear that the operator form has been employed elsewhere; however, the authors were only able to trace these two references.Google Scholar
  4. 2.
    M. Born, E. Wolf, Principles of Optics, Pergamon Press, OxfordGoogle Scholar
  5. 3.
    J. Ojeda-Castaneda, Focus error operator and related special functions, J. Opt. Soc. Am. (1983) (accepted)Google Scholar
  6. 4.
    W. Lukosz, Equivalent-lens theory of holographic imaging, J. Opt. Soc. Am. 58: 1084 (1968)ADSCrossRefGoogle Scholar
  7. 5.
    E. Wolf, Phase conjugacy and symmetries in spatially band-limited wavefield containing no evanescent components, J. Opt. Soc. Am. 70: 1311 (1980)CrossRefGoogle Scholar
  8. 6.
    W.D. Montgomery, Unitary operators in the homogeneous wavefield, Opt. Lett. 6: 314 (1981)ADSCrossRefGoogle Scholar
  9. 7.
    A.W. Lohmann, J. Ojeda-Castaneda, N. Streibl, Symmetries in coherent and in partially coherent fields, Opt. Acta 30: 399 (1983)ADSCrossRefGoogle Scholar
  10. 8.
    G. Häusler, E. Körner, A simple focusing criterion, Appl. Opt. (1983) (accepted)Google Scholar
  11. 9.
    W.D. Montgomery, Algebraic formulations of diffraction applied to self-imaging, J. Opt. Soc. Am. 58: 1112 (1968)ADSCrossRefGoogle Scholar
  12. 10.
    A.W. Lohmann, D.E. Silva, An interferometer based on the Talbot effect, Opt. Commun. 2: 413 (1971)ADSCrossRefGoogle Scholar
  13. 10.
    J. Jahns, A.W. Lohmann, The Lau effect (a diffraction experiment with incoherent illumination), Opt. Commun. 28: 263 (1979)ADSCrossRefGoogle Scholar
  14. 11.
    A.W. Lohmann, J. Ojeda-Castaneda, Spatial periodicities in partially coherent fields, Ont. Acta 30: 475 (1983)Google Scholar
  15. 12.
    A.W. Lohmann, J. Ojeda-Castaneda, W. Streibl, Spatial periodicities in coherent and in partially coherent fields, Opt. Acta (1983) (accepted)Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • A. W. Lohmann
    • 1
  • J. Ojeda-Casteneda
    • 1
    • 2
  • N. Streibl
    • 1
  1. 1.Physikalisches InstitutUniversität ErlangenErlangenGermany
  2. 2.INAOEPueblaMexico

Personalised recommendations