Advertisement

Noise and Fluctuations in Multiphoton Processes

  • Peter Zoller
Conference paper

Abstract

In multiphoton processes atoms respond in a nonlinear way to (laser) light and its fluctuations.1–14 An atom absorbing a number of photons is sensitive not only to the mean intensity and bandwidth of the light, but also to the kind and details of the fluctuations, i.e., to the higher-order statistics of the radiation field. During the past few years we have gained a considerable theoretical understanding of photon correlation effects in resonant multiphoton processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review and references to earlier papers see: J. H. Eberly, in: “Laser Spectroscopy IV,” H. Walther and K. W. Rothe, eds., Springer, Berlin (1979), p. 80; P. Zoller, in: “Laser Physics,” Proc. of the Second New Zealand Summer School in Laser Physics, D. F. Walls and J. D. Harvey, Eds., Academic, New York (1980), p. 99; P. Lambropoulos and P. Zoller, Proc. of the Second International Conference on Multiphoton Processes, Budapest (1980), p. 193; A. T. Georges and P. Lambropoulos, Adv. Electr. Electron Phys. 54:191 (1980); S. Stenholm, preprint.Google Scholar
  2. 2.
    P. Zoller, G. Alber and R. Salvador, Phys. Rev. A 24:398 (1981) and references cited.Google Scholar
  3. 3.
    A. T. Georges and S. N. Dixit, Phys. Rev. A 23: 2580 (1981).ADSCrossRefGoogle Scholar
  4. 4.
    V. Yu. Finkelshtein, Phys. Rev. A 27: 361 (1981).Google Scholar
  5. 5.
    M. Helm and P. Zoller, to be published.Google Scholar
  6. 6.
    P. Zoller and J. Cooper, to be published.Google Scholar
  7. 7.
    P. Zoller, J. Phys. B 15:2911 (1982); M. Lewenstein, P. Zoller and J. Mostowski, J. Phys. B 16:563 (1983) and references cited.Google Scholar
  8. 8.
    J. J. Yeh and J. H. Eberly, Phvs. Rev. A 24: 888 (1981).ADSCrossRefGoogle Scholar
  9. 9.
    L. A. Lompre, G. Mainfray, C. Manus and J. P. Marinier, J. Phys. B 14: 4307 (1981).ADSCrossRefGoogle Scholar
  10. 10.
    K. Rzazewski and J. H. Eberly, Phys. Rev. A 27:2026 (1983); G. S. Agarwal and P. Agassi, Phys. Rev. A 27: 2254 (1983).CrossRefGoogle Scholar
  11. 11.
    J. Dalton and P. L. Knight, J. Phys. B 15: 3997 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    G. S. Agarwal and C. V. Kunasz, Phys. Rev. A 27: 2254 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    R. Daniell and G. Ferrante, J. Phvs. B 14:L635 (1981) and references cited.Google Scholar
  14. 14.
    D. E. Nitz, A. V. Smith, M. D. Levenson and S. J. Smith, Phys. Rev. A 24: 288 (1981).ADSCrossRefGoogle Scholar
  15. 15.
    N. G. Van Kampen, “Stochastic Processes in Physics and Chemistry,” North-Holland, Amsterdam (1981).Google Scholar
  16. 16.
    H. Risken, “The Fokker-Planck Equation: Methods of Solution and Applications,” in: Springer Series in Synergetics H. Haken, ed., Springer-Verlag, Berlin (in press).Google Scholar
  17. 17.
    L. N. Menegozzi and W. E. Lamb, Jr., Phys. Rev. A 17:701 (1978) and references cited on amplified spontaneous emission.Google Scholar
  18. 18.
    D. S. Elliot, R. Roy and S. J. Smith, Phys. Rev. A 26: 12 (1982).ADSCrossRefGoogle Scholar
  19. 19.
    J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre and H. Risken, Phys. Rev. A 25: 2226 (1982).ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    S. N. Dixit and P. S. Sahni, Phys. Rev. Lett. 50:1273 (1983) and references cited.Google Scholar
  21. 21.
    K. Wodkiewicz, Z. Phys. B 42: 95 (1981).Google Scholar
  22. 22.
    For a discussion of a multimode theory see N. B. Abraham, J. C. Huang, D. A. Kranz and E. B. Rockower Phys. Rev. A 24: 2556 (1981)Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Peter Zoller
    • 1
    • 2
  1. 1.Joint Institute for Laboratory AstrophysicsUniversity of Colorado and National Bureau of StandardsBoulderUSA
  2. 2.Institute for Theoretical PhysicsUniversity of InnsbruckAustria

Personalised recommendations