Advertisement

Spectral Properties of Tricritical Lasers

  • John C. Englund
  • William C. Schieve
Conference paper

Abstract

It is by now well-known that the laser threshold can be considered a non-equilibrium analogy to a second-order phase transition point in equilibrium systems.1 With the addition of a saturable intracavity absorber, this behavior may be replaced by optical bistability, in which a hysteresis cycle is observed2; this has been explained theoretically by several authors, for standing-wave Doppler-broadened lasers3 and for running-wave homogeneously broadened lasers4, on the basis of semiclassical theory. It has been shown, however, that the bistable behavior is, strictly speaking, a transient phenomenon and that the presence of noise sources leads to behavior that is analogous to a first-order phase transition.5,6 The field statistics have been modelled on the basis of both Fokker-Planck equations4,7,8 and birth-death equations9 to demonstrate this analogy. It is important to point out, however, that the relaxation to this steady state takes place very slowly7,10, through “tunneling”, and only the hysteresis-cycle behavior has been observed experimentally.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. DeGiorgio and M. O. Scully, Phys. Rev. A2, 1170 (1970);Google Scholar
  2. R. Graham and H. Haken, Z. Phys. 237, 31 (1970);ADSCrossRefMathSciNetGoogle Scholar
  3. R. Graham, Prog. Opt. 12, 235 (1974).Google Scholar
  4. 2.
    P. H. Lee, P. B. Schoefer and W. B. Barker, Appl. Phys. Lett. 13, 373 (1968);ADSCrossRefGoogle Scholar
  5. V. N. Lisitsyn and V. P. Chebotaev, Zh. Eksp. Teor. Fiz. Pis’ma 7, 3 (1968)Google Scholar
  6. V. N. Lisitsyn and V. P. Chebotaev, [Sov. Phys. JETP Lett. 7, 1 (1968)].Google Scholar
  7. 3.
    H. Greenstein, J. Appl. Phys. 43, 1732 (1972);ADSCrossRefGoogle Scholar
  8. R. Salomaa and S. Stenholm, Phys. Rev. A8, 2695 (1973);ADSCrossRefGoogle Scholar
  9. R. Salomaa and S. Stenholm, Phys. Rev. A8, 2711 (1973);ADSCrossRefGoogle Scholar
  10. A. P. Kazantsev, S. G. Rautian and G. I. Surdutovich, Zh. Eksp. Teor. Fiz. 54, 1409 (1968)Google Scholar
  11. A. P. Kazantsev, S. G. Rautian and G. I. Surdutovich, [Sov. Phys. JETP 27,756 (1968)].Google Scholar
  12. 4.
    L. A. Lugiato, P. Mandel, S. T. Dembinski and A. Kossakowski, Phys. Rev. A8, 238 (1978);Google Scholar
  13. S. T. Dembinski, A. Kossakowski, L. A. Lugiato and P. Mandel, Phys. Rev. A/8, 1145 (1978).Google Scholar
  14. 5.
    J. F. Scott, M. Sargent III and C. D. Cantrell, Opt. Commun. 15, 13 (1975).ADSCrossRefGoogle Scholar
  15. 6.
    S. T. Dembinski and A. Kossakowski, Z. Phys. B 25, 207 (1976).ADSGoogle Scholar
  16. 7.
    R. Salomaa, J. Phys. A: Gen. Phys. 7, 1094 (1974).ADSCrossRefGoogle Scholar
  17. 8.
    A. P. Kazantsev and G. I. Surdutovich, Zh. Eksp. Teor. Fiz. 58, 245 (1970)Google Scholar
  18. A. P. Kazantsev and G. I. Surdutovich, [Sov. Phys. JETP 31, 133 (1970)ADSGoogle Scholar
  19. F. Casagrande and L. A. Lugiato, Nuovo Cimento B 48, 287 (1978);ADSCrossRefGoogle Scholar
  20. P. Mandel, Phys. Rev. A2/, 2020 (1980).Google Scholar
  21. 9.
    R. Roy, Phys. Rev. A20, 2093 (1979).ADSCrossRefGoogle Scholar
  22. 10.
    J. C. Englund, R. R. Snapp and W. C. Schieve, Fluctuations, Instabilities and Chaos in the Laser-Driven Nonlinear Ring Cavity, in Progress in Optics (to appear).Google Scholar
  23. 11.
    D. Walgraef, P. Borckmans and G. Dewel, Z. Phys. B 30, 437 (1978).ADSGoogle Scholar
  24. 12.
    J. C. Antoranz and M. G. Velarde, Opt. Commun. 38, 61 (1981).ADSCrossRefGoogle Scholar
  25. 13.
    R. B. Griffiths, Phys. Rev. Lett. 24, 715 (1970).CrossRefGoogle Scholar
  26. 14.
    R. D. Hempstead and M. Lax, Phys. Rev. 161, 350 (1967).ADSCrossRefGoogle Scholar
  27. 15.
    H. Risken and H. D. Vollmer, Z. Phys. 201, 323 (1967).ADSCrossRefGoogle Scholar
  28. 16.
    S. T. Dembinski, A. Kossakowski and L. Wolniewicz, Z. Phys. B 27, 281 (1977).ADSGoogle Scholar
  29. 17.
    S. T. Dembinski, A. Kossakowski, L. Wolniewicz, L. A. Lugiato and P. Mandel, Z. Phys. B 32, 107 (1978);ADSGoogle Scholar
  30. K. Stefanski, Nuovo Cimento B 54, 435 (1979).ADSCrossRefGoogle Scholar
  31. 18.
    S. T. Dembinski, A. Kossakowski, P. Peplowski, L. A. Lugiato and P. Mandel, Phys. Lett. A 68, 20 (1978).ADSCrossRefMathSciNetGoogle Scholar
  32. 19.
    R. Kubo, K. Matsuo and K. Kitahara, J. Stat. Phys. 9, 51 (1973).ADSCrossRefGoogle Scholar
  33. 20.
    S. Ruschin and S. H. Bauer, Chem. Phys. Lett. 66, 100 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • John C. Englund
    • 1
  • William C. Schieve
    • 1
  1. 1.Center for Studies in Statistical MechanicsUniversity of Texas at AustinAustinUSA

Personalised recommendations