Nonlocal Theory of Second Harmonic Generation from a Metal Surface

  • Ole Keller
Conference paper


During the past two decades significant progress has been made in our understanding of the linear optical properties of metals 1. It has turned out that nonlocal electronic transport phenomena are of fundamental importance for the description of the linear electromagnetic field close to the surface. For the corresponding nonlinear problem there are embarrassingly few calculations more sophisticated than the so-called hydrodynamic theory which includes nonlocal effects via magnetic dipole and electric quadropole terms only 2. In the present paper we shall outline a general nonlocal theory of parametric second harmonic generation. A Green’s function formulation of the nonlinear bulk-selvedge coupling problem will be given, and on the basis of a semiinfinite potential barrier model with no interference effects the structure of the nonlinear electromagnetic field will be studied. Contact with previous formulations is established in the appropriate near-local limit.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Mukhopadhyay and S. Lundqvist, Physica Scripta 17: 69 (1978).Google Scholar
  2. 2.
    J. E. Sipe and G. I. Stegeman, in: »Surface Polaritons», V. M. Agranovich and D.L. Mills, ed., North-Holland, Amsterdam (1982).Google Scholar
  3. 3.
    Keller, in: »Proceedings of the Tenth Nordic Semiconductor Meeting», L. D. Nielsen, ed., Technical Univ. Denmark, Copenhagen (1982).Google Scholar
  4. 4.
    J. Rudnick and E. A. Stern, Phys. Rev. B4: 4274 (1971).ADSCrossRefGoogle Scholar
  5. 5.
    Keller, lecture notes from the winterschool on selected topics in solid state physics, The Danish Physical Society, Copenhagen (1983).Google Scholar
  6. 6.
    Keller, Phys. Rev. A26: 1742 (1982).ADSCrossRefGoogle Scholar
  7. 7.
    Keller, J. Phys. C:Solid State Phys. 15: 329 (1982).ADSGoogle Scholar
  8. 8.
    S. S. Jha, Phys. Rev. 140: A2020 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    N. Bloembergen, R. K. Chang, S. S. Jha, and C.H. Lee, Phys. Rev. 174: 813 (1968).ADSCrossRefGoogle Scholar
  10. 10.
    Keller, Phys. Rev. B (to be published).Google Scholar
  11. 11.
    K. L. Kliewer and R. Fuchs, Phys. Rev. 181: 552 (1969).ADSCrossRefGoogle Scholar
  12. 12.
    Keller, J. Opt. Soc. Amer. 72: 1273 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Ole Keller
    • 1
  1. 1.Physics LaboratoryUniversity of AalborgAalborg ØstDenmark

Personalised recommendations