Semiclassical Multi-Mode Floquet Theory and Non-Adiabatic Approximation Quasi-Energy Method for Intense Field Multiphoton Processes

  • Shih-I Chu
  • Tak-San Ho
  • James V. Tietz
Conference paper


The use of the (single-mode) semiclassical Floquet theory [1,2] for nonperturbative treatments of the multiphoton dynamics of finite-level systems, involving periodic time-dependent Hamiltonians, has attracted considerable attention in the last few years. A detailed review of the theoretical investigations for two-level systems has been given by Dion and Hirschfelder [2]. Recently the conventional (single-mode) finite-level Floquet theory [1,2] has been extended to infinite-level (to include both bound as well as continuum states) non-Hermitian Floquet or complex quasi-energy theories [3–6], employing the use of complex-coordinate transformation [7] and L2-continuum discretization. This yields practical techniques for the study of intense field multiphoton ionization (MPI) of atoms [3], Stark-Zeeman [4] and laser-Zeeman [5] effects as well as multiphoton dissociation (MPD) of small molecules [6], using entirely only bound-state technology. In this paper, two new developments in Floquet theory, namely, the generalized multi-mode Floquet theory as well as a non-adiabatic quasi-energy method will be briefly presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. H. Shirley, Phys. Rev. B138, 979 (1965).ADSCrossRefGoogle Scholar
  2. 2.
    D. R. Dion and J. O. Hirschfelder, Adv. Chem. Phys. 35, 265 (1976).Google Scholar
  3. 3.
    S. I. Chu and W. P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977);ADSCrossRefGoogle Scholar
  4. S. I. Chu, Chem. Phys. Lett. 54, 367 (1978).ADSCrossRefGoogle Scholar
  5. 4.
    S. I. Chu, Chem. Phys. Lett. 58, 462 (1978).ADSCrossRefGoogle Scholar
  6. 5.
    S. I. Chu, Chem. Phys. Lett. 64, 178 (1979).ADSCrossRefGoogle Scholar
  7. 6.
    S. I. Chu, J. Chem. Phys. 75, 2215 (1981);ADSCrossRefGoogle Scholar
  8. S. I. Chu, C. Laughlin, and K. K. Datta, Chem. Phys. Lett. (in press 1983).Google Scholar
  9. 7.
    B. Simon, Ann. Math. 97, 247 (1973);CrossRefzbMATHGoogle Scholar
  10. E. Balslev and J. M. Combes, Comm. Math. Phys. 22, 280 (1971).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 8.
    T. S. Ho, S. I. Chu and J. V. Tietz, Chem. Phys. Lett. 96, 464 (1983).ADSCrossRefGoogle Scholar
  12. 9.
    S. I. Chu, T. S. Ho and J. V. Tietz, Chem. Phys. Lett. (submitted).Google Scholar
  13. 10.
    For recent reviews, see, for example, N. Bloembergen and E. Yablonovîtch, Phys. Today 31, 23 (1978);Google Scholar
  14. P. A. Schulz, Aa. S. Suadbo, D. J. Krajnovich, H. S. Kwok, Y. R. Shen, and Y. T. Lee, Ann. Rev. Phys. Chem. 30, 379 (1979);ADSCrossRefGoogle Scholar
  15. “Coherent Nonlinear Optics”, edited by M. S. Feld and V. S. Letokhov Springer, New York, 1980).Google Scholar
  16. 11.
    For recent reviews, see “Atom-Molecule Collision Theory,” edited by R. B. Bernstein ( Plenum, New York, 1979 ).Google Scholar
  17. 12.
    S. I. Chu, J. V. Tietz, and K. K. Datta, J. Chem. Phys. 77, 2968 (1982).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Shih-I Chu
    • 1
  • Tak-San Ho
    • 1
  • James V. Tietz
    • 1
  1. 1.Department of ChemistryUniversity of KansasLawrenceUSA

Personalised recommendations