Advertisement

Photoexcitation to States Lying Very near the Continuum Limit

  • D. A. Cardimona
  • C. R. StroudJr.
Conference paper

Abstract

Atomic photo-absorption, both bound-bound and bound-continuum, is an old problem that is treated in elementary books on quantum theory. The recent interest in Rydberg atomic states and in multi-photon ionization with narrow bandwidth tunable lasers has given rise to the study of a different type of photo-absorption in which the final state is neither a bound nor a continuum state, but rather a mixture of both. One such state is an autoionizing or Fano state.1 Another is the molecular quasi-continuum.2 In this paper we will introduce a third sort of hybrid bound-continuum state. When a laser is tuned very near the boundary between the bound and continuum states of an atom, power broadening will mix the two types of states. The resulting hybrid state will be a coherent superposition of bound and continuum states that is unstable to decay into an ionized state, but whose decay may contain a significant non-exponential component.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Fano, Phys. Rev. 124, 1866 (1961).ADSCrossRefzbMATHGoogle Scholar
  2. 2.
    N.R. Isenor, V. Merchant, R.S. Hallsworth, and M.C. Richardson, Can. J. Phys. 51, 1281 (1973).ADSCrossRefGoogle Scholar
  3. 3.
    L.A. Khalfin, Sov. Phys. JETP 6, 1053 (1958).Google Scholar
  4. 4.
    M.L. Goldberger and K.M. Watson, Collision Theory, Wiley, New York (1964), chapter 8.Google Scholar
  5. 5.
    C.R. Stroud, Jr., Ph.D. Thesis, Washington University (1969).Google Scholar
  6. 6.
    L. Fonda and G.C. Ghirardi, Il Nuovo Cim. 7A, 180 (1972).Google Scholar
  7. 7.
    J. Mostowski and K. Wôdkiewicz, Bull. Acad. Polon. Sci. 21, 1027 (1973).Google Scholar
  8. 8.
    L. Davidovich, Ph.D. Thesis, University of Rochester, (1975).Google Scholar
  9. 9.
    P.L. Knight and P.W. Milonni, Phys. Lett. 56A, 275 (1976).CrossRefGoogle Scholar
  10. 10.
    C.A. Nicolaides and D.R. Beck, Phys. Rev. Lett. 38, 683 (1977).ADSCrossRefGoogle Scholar
  11. 11.
    P.L. Knight, Phys. Lett. 61A, 25 (1977).CrossRefGoogle Scholar
  12. 12.
    L. Fonda, G.C. Ghirardi, and A. Rimini, Rep. Prog. Phys. 41, 587 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    C.A. Nicolaides and D.R. Beck, Int. J. Quant. Chem. 14, 457 (1978).CrossRefGoogle Scholar
  14. 14.
    K. Rzazewski, M. Lewenstein, and J.H. Eberly, J. Phys. B 15, L661 (1982).ADSGoogle Scholar
  15. 15.
    P.L. Knight, in Laser Physics, Proc. Second New Zealand Summer School in Laser Physics, D.F. Walls and J.D. Harvey, eds., Academic Press, New York (1980).Google Scholar
  16. 16.
    L. Allen and C.R. Stroud, Jr., Phys. Rep. 91, 1 (1982).Google Scholar
  17. 17.
    H.A. Bethe and E.E. Salpeter, Quantum Mechanics of One-and Two-Electron Atoms, Plenum, New York (1957).CrossRefzbMATHGoogle Scholar
  18. 18.
    V. Weisskopf and E. Wigner, Z. Phys. 63, 54 (1930).Google Scholar
  19. 19.
    R. Jacob and R.G. Sachs, Phys. Rev. 121, 350 (1961).ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • D. A. Cardimona
    • 1
  • C. R. StroudJr.
    • 1
  1. 1.Institute of OpticsUniversity of RochesterRochesterUSA

Personalised recommendations