Phase and Frequency Coherent Multiple Pulse Spectroscopy: Applications to Collisional Dynamics

  • Warren S. Warren
  • Mark A. Banash
Conference paper


Any two level system can be completely characterized once its resonance frequency w0, Rabi frequency w1, and relaxation times T1 and T2 are known. But two-level approximations break down in many real spectroscopic applications; for example, measurements of intermolecular interactions, energy transport, or collision rates usually require explicit consideration of many distinct coupled states. As a result, the information obtainable from absorption spectra or simple laser pulse sequences is often insufficient.We have been exploring the uses of laser pulse sequences with independently variable pulse phases, pulse frequencies, and pulse shapes to extract information from complex systems. In this paper we will consider only collisional effects in gases, and will show that dual frequency pump-probe experiments give for the first time an essentially complete description of the dynamics of translational energy redistribution from a non-equilibrium state.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a recent review see: M. Burns, W. Liu, and A. H. Zewail, “Modern Problems in Solid State Physics” (North Holland, Amsterdam, 1982), vol. 20.Google Scholar
  2. 2.
    M. D. “Levinson,Introduction to Nonlinear Laser Spectroscopy” (Academic, New York, 1982 ).Google Scholar
  3. 3.
    M. Broyer, J. Vigué, and J. C. Lehmann, J. Chem. Phys. 63: 5428 (1975).Google Scholar
  4. 4.
    A. H. Zewail, T. E. Orlowski, K. E. Jones, and D. E. Godar, Chem. Phys. Lett. 48: 256 (1977)Google Scholar
  5. T. E. Orlowski, K. E. Jones, and A. H. Zewail, Chem. Phys. Lett. 54: 197 (1978).Google Scholar
  6. 5.
    R. G. Brewer and S. S. Kano, Optical Dephasing in Molecular Iodine, “Nonlinear Behavior of Molecules, Atoms and Ions in Electric, Magnetic or Electromagnetic Fields” (Elsevier, Amsterdam, 1979), and references therein.Google Scholar
  7. 6.
    W. S. Warren and A. H. Zewail, J. Chem. Phys. 78: 2279 (o983).Google Scholar
  8. 7.
    A. Schenzle, N. C. Wong, and R. G. Brewer, Phys. Rev. A. 21: 887 (1980)Google Scholar
  9. R. G. Brewer and A. Genack, Phys. Rev. Lett. 36: 959 (1976).Google Scholar
  10. 8.
    M. Kunitomo, T. Endo. S. Nakanishi, and T. Hasi, Phys. Rev.A 25: 2235 (1982).Google Scholar
  11. 9.
    W. S. Warren and A. H. Zewail, J. Chem. Phys. 75: 5956 (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Warren S. Warren
    • 1
  • Mark A. Banash
    • 1
  1. 1.Department of ChemistryPrinceton UniversityPrincetonUSA

Personalised recommendations