Quantum Noise in Ring-Laser Gyroscopes

  • Wolfgang Schleich
  • Marlan O. Scully
  • Virgil Sanders
Conference paper


The new generation of ring-laser gyroscopes1 can compete with their mechanical counterparts. They can now operate down to a small fraction of earth rotation rate using rings of 1-m diameter, which makes them interesting for tests of metric gravitation theories.2 They have reached a sensitivity where the noise limit is only due to the quantum fluctuations, which arise from spontaneous emission of the laser atoms. Whereas all kinds of mechanical noise can be circumvented by some “tricky” techniques, there is no way around the quantum noise, which stems from the quantization of the electric field in the resonator. The final limitation of ring-laser gyroscopes is thus given by the quantum noise.3 Therefore it is important to understand this effect in detail.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of ring-laser gyroscopes, see: W. Chow, J. Gea-Benacloche, L. Pedrotti, V. Sanders, W. Schleich, and M. O. Scully, to be published in Review of Modern Physics.Google Scholar
  2. 2.
    M. O. Scully, M. S. Zubairy, and M. P. Haugan, Proposed optical test of metric gravitation theories, Phys. Rev. A24:2009 (1981). See also: W. Schleich and M. O. Scully, General relativity and modern optics, in: “Modern Trends in Atomic and Molecular Physics,” Proceedings of the Les Houches Summer School, session XXXVIII, R. Stora and G. Grynberg, eds., North-Holland, Amsterdam, in press.Google Scholar
  3. 3.
    T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, The laser gyro at quantum limit, IEEE J. Ouant. Elect. 16:1376 (1980). See also: Marlan O. Scully, W. Chow, K. Drühl, Hermann Haus, and Virgil Sanders, Quantum noise limitations and the determination of laser frequency, to be published.Google Scholar
  4. 4.
    J. D. Cresser, W. H. Louisell, P. Meystre, W. Schleich, and M. O. Scully, Quantum noise in ring-laser gyros. I. Theoretical formulation of problem, Phys. Rev. A 25: 2214 (1982).MathSciNetGoogle Scholar
  5. 5.
    J. D. Cresser, D. Hammonds, W. H. Louisell, P. Meystre, and H. Risken, Quantum noise in ring-laser gyros. II. Numerical results. Phys. Rev. A 25: 2226 (1982).ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    J. D. Cresser, Quantum noise in ring-laser gyros. III. Approximate analytical results in unlocked region, Phys. Rev. A 26: 398 (1982).CrossRefGoogle Scholar
  7. 7.
    W. Schleich, C.-S. Cha, and J. D. Cresser, Quantum noise in a dithered ring-laser gyroscope, to be published.Google Scholar
  8. 8.
    M. M. Tehrani and L. Mandel, Coherence theory of the ring-laser, Phys. Rev. A 17:677 (1978); M. M. Tehrani and L. Mandel, Intensity fluctuations in a two mode ring-laser, Phys. Rev. A 17:694 (1978).; S. Singh and L. Mandel, Mode competition in a homogeneously broadened ring-laser, Phys. Rev. A 20: 2459 (1979).Google Scholar
  9. 9.
    For a review see: E. J. Post, Sagnac effect, Rev. Mod. Phys. 39: 475 (1967).Google Scholar
  10. 10.
    F. Aronowitz, The laser gyro, in: “Laser Applications”, Vol. 1., M. Ross, ed., Academic Press, New York (1977).Google Scholar
  11. 11.
    M. O. Scully and W. E. Lamb, Jr., Quantum theory of an optical maser. I. General theory, Phys. Rev. 159: 208 (1967).CrossRefGoogle Scholar
  12. 12.
    R. L. Stratonovich, “Topics in the Theory of Random Noise”, Gordon and Breach, New York (1967).zbMATHGoogle Scholar
  13. 13.
    H. Haken, H. Sauermann, Ch. Schmidt, and H. D. Vollmer, Theory of laser noise in the phase locking region, Z. Phys. 206: 369 (1967).CrossRefGoogle Scholar
  14. 14.
    H. Risken, “The Fokker-Planck Equation, Methods of Solutions and Applications”, in: “Springer Series in Synergetics”,H. Haken, ed., Springer Verlag, Heidelberg in press.Google Scholar
  15. 15.
    W. Schleich, Quanten Fluktuationen in Ring Laser Gyroskopen, ” MPQ-Report No. 54 (1981).Google Scholar
  16. 16.
    J. Killpatrick, The laser gyro, IEEE Spectrum 4: 44 (1967).CrossRefGoogle Scholar
  17. 17.
    T. J. Hutchings and D. C. Stjern, Scale factor nonlinearity of a body dithered laser gyro, Proc. IEEE, 1978, Nat. Aerospace and Electron. Conf., p. 549.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Wolfgang Schleich
    • 1
  • Marlan O. Scully
    • 1
  • Virgil Sanders
    • 1
  1. 1.Institute for Modern Optics Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations