Advertisement

Trapped and Cooled Atomic Particles for Spectroscopy

  • P. E. Toschek
  • W. Neuhauser
  • M. Hohenstatt
Conference paper

Abstract

High-resolution spectroscopy of atomic particles requires the eliminations of at least three types of spectral line broadening: Doppler broadening, collision broadening, and transit time broadening, which results from a limited time duration of the interaction of the particles with the electromagnetic field. These sources of line broadening contribute in various proportions depending on the frequency range of the radiation and on the experimental geometric arrangement of particles and waves in a particular interaction scheme. When radio-frequency radiation and microwaves interact with atomic beams, transit-time broadening — here the principal broadening mechanism — has been successfully circumvented, as early as in the fortieth, by the application of two widely separated interaction regions and the corresponding generation of “Ramsey fringes”.|1| On the other hand, microwave spectroscopy of the ground state hyperfine transitions of 3He+ spatially confined in a suitable electromagnetic field, a so-called “trap”, resulted 1965 in the spectral resolution of 1 in 109 by Fortson, Major, and Dehmelt at the University of Seattle |2|. Even a resolution of 2 parts in 1010 was demonstrated 1973 by Major and Werth |3| with a ground state hyperfine transition of trapped 199Hg+ ions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N.F. Ramsey, Phys. Rev. 76, 966 (1949)CrossRefGoogle Scholar
  2. 2.
    E.N. Fortson, F.G. Major, and H.G. Dehmelt, Phys. Rev. Letters 16, 221 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    F.G. Major and G. Werth, Phys. Rev. Letters 30, 1155 (1973)ADSCrossRefGoogle Scholar
  4. 4.
    Th. Hânsch and P.E. Toschek, IEEE J. Quantum Electronics QE-4, 467 (1968); Proc. of the Joint Conference on Lasers and OptoElectronics, p. 148, Southampton, 1969Google Scholar
  5. 5.
    P.W. Smith and T. Hânsch, Phys. Rev. Lett. 26, 740 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    T.W. Hânsch, M.D. Levenson, A.L. Schawlow, and P.E. Toschek, Bull. Am. Phys. Soc. 16, 310 (1971)Google Scholar
  7. 7.
    P. Jacquinot, in “High-Resolution Laser Spectroscopy”, K. Shimoda, ed., p. 51, Springer-Verlag, Berlin, 1976Google Scholar
  8. 8.
    Ye. V. Baklanov, B. Ya. Dubetskij, and V.P. Chebotaev, Appl. Phys. 9, 171 (1976) and 11, 201 (1976)Google Scholar
  9. 9.
    J.C. Bergquist, S.A. Lee, and J.L. Hall, in “Laser SpectroscopyIII”, J.L. Hall and J.L. Carsten, eds., p. 142, Springer-Verlag, Berlin, 1977Google Scholar
  10. 10.
    M.M. Salour and C. Cohen-Tannoudji, Phys. Rev. Lett. 38, 757 (1977)ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Bergquist, R.L. Barger, and D.J. Glaze, in “Laser Spectroscopy IV”, H. Walther and K.W. Rothe, eds., p. 120, Springer-Verlag, Berlin, 1979Google Scholar
  12. 12.
    R. Iffländer and G. Werth, Metrologia 13, 167 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    W. Neuhauser, G. Förster, P.E. Toschek, and H.G. Dehmelt, J. Opt. Soc. Am. 68, 623 (1978)ADSGoogle Scholar
  14. 14.
    R.H. Dicke, Phys. Rev. 89, 472 (1953)ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Wineland and H.G. Dehmelt, Bull. Amer. Phys. Soc. 20, 637 (1975)Google Scholar
  16. 16.
    T.W. Hänsch and A.L. Schawlow, Opt. Communic. 13, 68 (1975)ADSCrossRefGoogle Scholar
  17. 17.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek and H. Dehmelt, Phys. Rev. Letters 41, 233 (1978)ADSCrossRefGoogle Scholar
  18. 18.
    D.J. Wineland, R.E. Drullinger, and F.L. Walls, Phys. Rev. Letters 40, 1639 (1978)ADSCrossRefGoogle Scholar
  19. 19.
    F.M. Penning, Physica 3, 873 (1936)CrossRefGoogle Scholar
  20. 20.
    R.S. Van Dyck, Jr., P.B. Schwinberg, and H. Dehmelt, in: “New Frontiers in High-Energy Physics”, B.M. Kursunoglu, A. Perlmutter, and L.F. Scott, eds., Plenum, New York, p. 159, 1978Google Scholar
  21. 21.
    W. Paul, O. Osberghaus, and E. Fischer, Forschungsber. d. Wirtsch.- u. Verkehrsministeriums NRW, Nr. 415 (1958) - E. Fischer, Z. Physik 156, 1 (1959)Google Scholar
  22. 22.
    R.F. Wuerker, H. Shelton, and R.V. Langmuir, J. Appl. Phys. 30, 342 (1959)ADSCrossRefGoogle Scholar
  23. 23.
    D.A. Church and H.G. Dehmelt, J. Appl. Phys. 40, 3421 (1969)ADSCrossRefGoogle Scholar
  24. 24.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Phys. Rev. A22, 1137 (1980)ADSCrossRefGoogle Scholar
  25. 25.
    J. Javanainen, Appl. Phys. 23, 175 (1980)ADSCrossRefGoogle Scholar
  26. 26.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H. Dehmelt, Appl. Phys. 17, 123 (1978)ADSCrossRefGoogle Scholar
  27. 27.
    P.E. Toschek and W. Neuhauser, in “Atomic Physics 7”, D. Kleppner and F.M. Pipkin, eds., Plenum, New York, N.Y., 1981Google Scholar
  28. 28.
    D.J. Wineland and W.M. Itano, Phys. Letters 82A, 75 (1981)Google Scholar
  29. 29.
    W. Nagourney, G. Janik, and H. Dehmelt, Proc. Natl. Acad. Sci. USA 80, 643 (1983)ADSCrossRefGoogle Scholar
  30. 30.
    R. Blatt and G. Werth, Phys. Rev. A 25, 1476 (1982)ADSCrossRefGoogle Scholar
  31. 31.
    R. Blatt, H. Schmatz, and G. Werth, Phys. Rev. Letters 48, 1601 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    R.E. Drullinger, D.J. Wineland, and J.C. Bergquist, Appl. Phys. 22, 365 (1980)ADSCrossRefGoogle Scholar
  33. 33.
    D.J. Wineland, J.C. Bergquist, W.M. Itano, and R.E. Drullinger, Opt. Lett. 5, 245 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    W.M. Itano and D.J. Wineland, Phys. Rev. A24, 1364 (1981). - “Laser Spectroscopy V”, p. 360, A.R.W. ‘tKellar, T. Oka, and V.P. Stoicheff, eds., Springer, Berlin, 1981Google Scholar
  35. 35.
    D.J. Wineland, J.J. Bollinger, and W.M. Itano, Phys. Rev. Letters 50, 628 (1938)ADSCrossRefGoogle Scholar
  36. 36.
    H.G. Bennewitz, W. Paul, and Ch. Schlier, Z. Phys. 141, 6 (1955)ADSCrossRefGoogle Scholar
  37. 37.
    W.H. Wing, Phys. Rev. Lett. 45, 631 (1980)CrossRefGoogle Scholar
  38. 38.
    H. Friedburg and W. Paul, Z. Phys. 130, 493 (1952)CrossRefGoogle Scholar
  39. 39.
    K.J. Kûgler, W. Paul, and U. Trinks, Phys. Letters B, 72, 442 (1978)CrossRefGoogle Scholar
  40. 40.
    V.S. Letokhov and V.G. Minogin, Opt. Communic. 35, 199 (1980)ADSCrossRefGoogle Scholar
  41. 41.
    J.E. Bjorkholm, R.R. Freeman, A. Ashkin, and D.B. Pearson, in “Laser Spectroscopy IV”, p. 49, H. Walther and K.W. Rothe, eds., Springer-Verlag, Berlin, 1979Google Scholar
  42. 42.
    A. Ashkin and J.P. Gordon, Opt. Letters 4, 161 (1979)ADSCrossRefGoogle Scholar
  43. 43.
    V.I. Balykin, V.S. Letokhov, and V.I. Mishin, Pis’ma Zh. Eksp. Teor. Fiz. 29,614 (1979) JETP Lett. 29,560 (1979)IGoogle Scholar
  44. 44.
    J.V. Prodan, W.A. Phillips, and H. Metcalf, Phys. Rev. Lett. 49, 1149 (1982)ADSCrossRefGoogle Scholar
  45. 45.
    J.H. Malmberg and T.M. O’Neil, Phys. Rev. Lett. 39, 1333 (1977)ADSCrossRefGoogle Scholar
  46. 46.
    C.F. Driscoll and J.H. Malmberg, Phys. Rev. Lett. 50, 167 (1983)ADSCrossRefGoogle Scholar
  47. 47.
    D.J. Wineland, Proc. 13th Ann. PTTI Application and Planing Meeting; Naval Res. Lab., Washington DC, 1981Google Scholar
  48. 48.
    D.J. Wineland, W.M. Itano, J.C. Bergquist, and F.L. Walls, Proc. 35th Ann. Symp. on Freq. Control, Philadelphia, Pa, 1981Google Scholar
  49. 49.
    H.G. Dehmelt, Bull. Amer. Phys. Soc. 18, 1521 (1973);Google Scholar
  50. H.G. Dehmelt, ibid, 20, 60 (1975)Google Scholar
  51. 50.
    W. Neuhauser, M. Hohenstatt, P.E. Toschek, and H.G. Dehmelt, in “Spectral Line Shapes”, B. Wende, ed., p. 1045, W. de Gruyter, Berlin, 1981Google Scholar
  52. 51.
    R. Schneider and G. Werth, Z. Physik A 293, 103 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • P. E. Toschek
    • 1
  • W. Neuhauser
    • 1
  • M. Hohenstatt
    • 1
  1. 1.1. Institut für ExperimentalphysikUniversität HamburgD-2 HamburgF.R. Germany

Personalised recommendations