Hazards in the Handling of Cryogenic Fluids

  • M. G. Zabetakis
Conference paper
Part of the Advances in Cryogenic Engineering book series (ACRE, volume 8)


Cryogenic fluids are now handled routinely for many laboratory and nonlaboratory uses. Safety codes, based in part on personal experience have been drafted by many groups. To be effective, such codes must be based on knowledge of the properties of such fluids, of the gases produced by their vaporization, and of the mixtures produced when the gases disperse into the surrounding atmosphere. The properties of the materials used to confine the low-temperature fluids and gases, and the response of the human body to both the fluids and vaporized gases and to the ambient atmospheres must also be considered. Each of these factors is reviewed here in connection with the hazards that may be encountered in handling cryogenic fluids such as liquid helium, hydrogen, neon, nitrogen, carbon monoxide, fluorine, argon, oxygen, methane, and krypton. In addition, since compressed gases usually play an important part in the production of these fluids, the general safety precautions to be observed in their handling, storage, and use are considered briefly.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Association of American Railroads, Bureau of Explosions, Interstate Commerce Commission Regulations, No, 13, New York (1960).Google Scholar
  2. 2.
    Compressed Gas Association, Inc., American Standard Compressed Gas Cylinder Valve Outlet and inlet Connections, Pamphlet V-1 (1957).Google Scholar
  3. 3.
    Compressed Gas Association, Inc., Methods for Hydrostatic Testing of Compressed Gas Cylinders, Pamphlet C-1.Google Scholar
  4. 4.
    H. A. J. Pieters and J. W. Creyghton, Safety in the Chemical Laboratory, 2nd ed., Academic Press, Inc., New York (1957), p. 36.Google Scholar
  5. 5.
    L. H. Cassutt, F. E. Maddocks, and W. A. Sawyer, Advances in Cryogenic Engineering, Vol. 5, K. D. Timmerhaus (ed.), Plenum Press, New York (1960), p. 55.Google Scholar
  6. 6.
    M. A. Elliott, C. W. Seibel, F. W. Brown, R. T. Artz, and L. B. Berger, Bureau of Mines Rept. of Investigations 3867 (1946).Google Scholar
  7. 7.
    R. B. Scott, Cryogenic Engineering, D. Van Nostrand Co., Inc., Princeton, N.J. (1959).Google Scholar
  8. 8.
    M. G. Zabetakis and D. S. Burgess, Bureau of Mines Rept. of Investigations 5707 (1961).Google Scholar
  9. 9.
    M. G. Zabetakis, A. L. Furno, and G. H. Martindill, Advances in Cryogenic Engineering, Vol. 6, K. D. Timmerhaus (ed.), Plenum Press, New York (1961), p. 185.CrossRefGoogle Scholar
  10. 10.
    C. H. Best and N. B. Taylor, The Physiological Basis of Medical Practice, 7th ed., The Williams and Wilkins Co., Baltimore, Md. (1961), p. 360.Google Scholar
  11. 11.
    W. G. Bigelow, W. T. Mustard, and J. G. Evans, Journal of Thoracic Surgery, Vol. 28, 463 (1954).Google Scholar
  12. 12.
    C. F. Schmidt, Medical Physiology, 10th ed., P. Bard (ed.), C. V. Mosby Co., St. Louis, Mo. (1956), pp. 433, 449.Google Scholar
  13. 13.
    Y. Henderson, and H. W. Haggard, Noxious Gases and the Principles of Respiration Influencing Their Action, The Chemical Catalog Co., Inc., New York (1927).Google Scholar
  14. 14.
    M. B. Jacobs, The Analytical Chemistry of Industrial Poisons, Hazards, and Solvents, Interscience Publishers, Inc., New York (1941).Google Scholar
  15. 15.
    R. D. Dripps and J. H. Comroe, Jr., Am. Jour, of Physiology, Vol. 149, No. 2, 277 (1947).Google Scholar
  16. 16.
    J. J. Forbes and G. W. Grove, Bureau of Mines Miners’ Circular 33 (1954).Google Scholar
  17. 17.
    D. Burgess and M. G. Zabetakis, Bureau of Mines Rept. of Investigations, 6099 (1962).Google Scholar
  18. 18.
    D. Burgess, A. Strasser, and J. Grumer, Fire Research Abstracts and Reviews, Vol. 3, 177 (1961).Google Scholar
  19. 19.
    S. M. Kogarko, Soviet Physics, Technical Physics, Vol. 3, No. 9, 1904 (1958).Google Scholar
  20. 20.
    Defense Research and Engineering, Office of the Director, The Handling and Storage of Liquid Propellants, Washington, D.C. (1961).Google Scholar
  21. 21.
    G. Perrott and N. A. Tolch, Bureau of Mines Bull, 349 (1932).Google Scholar
  22. 22.
    W. E. Tournay, F. M. Bower, and F. W. Brown, Bureau of Mines Bull, 472 (1949).Google Scholar
  23. 23.
    R. H. Anschutz, Advances in Cryogenic Engineering, Vol. 5, K. D. Timmerhaus (ed.), Plenum Press, New York (1960), p. 62.CrossRefGoogle Scholar
  24. 24.
    Directorate of Missile Captive Test, Air Force Flight Test Center, Safety Procedures for Rocket Propellants, Edwards Air Force Base, Calif., FTR-TM-58–1 (1958).Google Scholar
  25. 25.
    H. P. Hernandez, Advances in Cryogenic Engineering, Vol. 2, K. D. Timmerhaus (ed.), Plenum Press, New York (1960), p. 336.CrossRefGoogle Scholar
  26. 26.
    National Aeronautics and Space Administration, Hydrogen Safety Manual, Sect. 1–8, Lewis Research Center, Cleveland, Ohio (1959).Google Scholar
  27. 27.
    P. C. Vander Arend, Advances in Cryogenic Engineering, Vol. 5, K. D. Timmerhaus (ed.), Plenum Press, New York (1960), p. 49.CrossRefGoogle Scholar
  28. 28.
    R. W. Van Dolah, M. G. Zabetakis, D. S. Burgess, and G. S. Scott, Bureau of Mines Information Circ. 8137 (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1963

Authors and Affiliations

  • M. G. Zabetakis
    • 1
  1. 1.U.S. Bureau of MinesPittsburghUSA

Personalised recommendations